Skip to main content

Advertisement

Log in

Biomarkers of β-Cell Stress and Death in Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The hallmark of type 1 diabetes (T1D) is a decline in functional β-cell mass arising as a result of autoimmunity. Immunomodulatory interventions at disease onset have resulted in partial stabilization of β-cell function, but full recovery of insulin secretion has remained elusive. Revised efforts have focused on disease prevention through interventions administered at earlier disease stages. To support this paradigm, there is a parallel effort ongoing to identify circulating biomarkers that have the potential to identify stress and death of the islet β-cells. Whereas no definitive biomarker(s) have been fully validated, several approaches hold promise that T1D can be reliably identified in the pre-symptomatic phase, such that either β-cell preservation or immunomodulatory agents might be employed in at-risk populations. This review summarizes the most promising protein- and nucleic acid-based biomarkers discovered to date and reviews the context in which they have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. 2010;10:501–13.

    Article  CAS  PubMed  Google Scholar 

  2. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–9.

    Article  CAS  PubMed  Google Scholar 

  3. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–8.

    Article  CAS  PubMed  Google Scholar 

  4. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361:2143–52.

    Article  CAS  PubMed  Google Scholar 

  6. Rigby MR, DiMeglio LA, Rendell MS, Felner EI, Dostou JM, Gitelman SE, et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diab Endocrinol. 2013;1:284–94.

    Article  CAS  Google Scholar 

  7. Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, et al. Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab. 2012;97:3197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57:1584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, et al. How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maganti A, Evans-Molina C, Mirmira R. From immunobiology to β-cell biology: the changing perspective on type 1 diabetes. Islets. 2014;6:e28778.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol. 2015;3:67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the endocrine society, and the American Diabetes Association. Diabetes Care. 2015;38:1964–74.

    Article  CAS  PubMed  Google Scholar 

  13. Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53:2167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eizirik DL, Miani M, Cardozo AK. Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia. 2013;56:234–41.

    Article  CAS  PubMed  Google Scholar 

  15. Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci Transl Med. 2013;5:211ra156.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, et al. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes. 2012;61:818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang C, Diiorio P, Jurczyk A, O’Sullivan-Murphy B, Urano F, Bortell R. Pathological endoplasmic reticulum stress mediated by the IRE1 pathway contributes to pre-insulitic beta cell apoptosis in a virus-induced rat model of type 1 diabetes. Diabetologia. 2013;56:2638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marhfour I, Lopez XM, Lefkaditis D, Salmon I, Allagnat F, Richardson SJ, et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia. 2012;55:2417–20.

    Article  CAS  PubMed  Google Scholar 

  19. Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam Horm. 2014;95:35–62.

    Article  CAS  PubMed  Google Scholar 

  20. Engin F. ER stress and development of type 1 diabetes. J Investig Med. 2016;64:2–6.

    PubMed  Google Scholar 

  21. Ludvigsson J, Heding L. Abnormal proinsulin/C-peptide ratio in juvenile diabetes. Acta Diabetol Lat. 1982;19:351–8.

    Article  CAS  PubMed  Google Scholar 

  22. Snorgaard O, Hartling SG, Binder C. Proinsulin and C-peptide at onset and during 12 months cyclosporin treatment of type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:36–42.

    Article  CAS  PubMed  Google Scholar 

  23. Watkins RA, Evans-Molina C, Terrell JK, Day KH, Guindon L, Restrepo IA, et al. Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl Res. 2016;168:96–106.e1.

    Article  CAS  PubMed  Google Scholar 

  24. Schölin A, Nyström L, Arnqvist H, Bolinder J, Björk E, Berne C, et al. Proinsulin/C-peptide ratio, glucagon and remission in new-onset type 1 diabetes mellitus in young adults. Diabet Med. 2011;28:156–61.

    Article  PubMed  Google Scholar 

  25. Røder ME, Knip M, Hartling SG, Karjalainen J, Akerblom HK, Binder C. Disproportionately elevated proinsulin levels precede the onset of insulin-dependent diabetes mellitus in siblings with low first phase insulin responses. The Childhood Diabetes in Finland Study Group. J Clin Endocrinol Metab. 1994;79:1570–5.

    PubMed  Google Scholar 

  26. Truyen I, De Pauw P, Jørgensen PN, Van Schravendijk C, Ubani O, Decochez K, et al. Proinsulin levels and the proinsulin:C-peptide ratio complement autoantibody measurement for predicting type 1 diabetes. Diabetologia. 2005;48:2322–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sims EK, Chaudhry Z, Watkins RA, Syed F, Blum J, Fangqian O, et al. Elevations in the fasting serum proinsulin:C-peptide ratio precede the onset of type 1 diabetes. Diabetes Care. 2016. doi:10.2337/dc15-2849. Sims and colleagues demonstrated an increase in the PI:C ratio 12 months prior to T1D diagnosis in subjects followed in the TrialNet Pathway to Prevention study, with the most pronounced elevations observed in subjects ≤10 years of age. Logistic regression analysis, adjusted for age and body mass index, demonstrated an increased odds of progression to T1D with higher PI:C ratios.

    PubMed  Google Scholar 

  28. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology. 2013;154:603–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kanak MA, Takita M, Shahbazov R, Lawrence MC, Chung WY, Dennison AR, et al. Evaluation of MicroRNA375 as a novel biomarker for graft damage in clinical islet transplantation. Transplantation. 2015;99:1568–73. Circulating levels of miR-375 in persons undergoing autologous or allogeneic islet transplantation were analyzed and plasma miR-375 levels were found to be significantly higher in recipients of islet transplants compared to a control group who had not undergone transplantation.

    Article  CAS  PubMed  Google Scholar 

  30. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes. 2010;59:978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nielsen LB, Wang C, Sørensen K, Bang-Berthelsen CH, Hansen L, Andersen M-LM, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012;2012:896362.

    PubMed  PubMed Central  Google Scholar 

  32. Kim KW, Ho A, Alshabee-Akil A, Hardikar AA, Kay TWH, Rawlinson WD, et al. Coxsackievirus B5 infection induces dysregulation of microRNAs predicted to target known type 1 diabetes risk genes in human pancreatic islets. Diabetes. 2016;65:996–1003.

    Article  PubMed  Google Scholar 

  33. Husseiny MI, Kaye A, Zebadua E, Kandeel F, Ferreri K. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS ONE. 2014;9:e94591.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A. 2016;113:E1826–34. In this article, Lehmann-Werman and colleagues introduced a cell-free insulin DNA assay based on detection of the methylation status of 6 regional CpG sites in the insulin promoter. The authors found that demethylation at all 6 sites was present in ∼80% of DNA molecules from β cells compared to less than 0.01% of DNA from other tissues. The assay was subsequently validated in samples from subjects with T1D and in persons undergoing islet transplantation.

    Article  CAS  PubMed  Google Scholar 

  35. Akirav EM, Lebastchi J, Galvan EM, Henegariu O, Akirav M, Ablamunits V, et al. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A. 2011;108:19018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fisher MM, Watkins RA, Blum J, Evans-Molina C, Chalasani N, DiMeglio LA, et al. Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes. 2015;64:3867–72. Utilizing a droplet digital PCR-based assay, Fisher and colleagues demonstrated that circulating levels of both unmethylated and methylated insulin DNA were elevated in subjects with new onset T1D. Methylated insulin DNA remained elevated up to 8 weeks after T1D onset, while unmethylated insulin DNA levels decreased after diagnosis.

    Article  CAS  PubMed  Google Scholar 

  37. Herold KC, Usmani-Brown S, Ghazi T, Lebastchi J, Beam CA, Bellin MD, et al. β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest. 2015;125:1163–73. Herold and colleagues analyzed samples from the TrialNet Pathway to Prevention Cohort and found that individuals at high risk for T1D had increased levels of unmethylated insulin DNA during the presymptomatic phase of T1D.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM. Circulating differentially methylated amylin DNA as a biomarker of β-cell loss in type 1 diabetes. PLoS ONE. 2016;11:e0152662.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hartling SG, Knip M, Røder ME, Dinesen B, Akerblom HK, Binder C. Longitudinal study of fasting proinsulin in 148 siblings of patients with insulin-dependent diabetes mellitus. Study Group on Childhood Diabetes in Finland. Eur J Endocrinol. 1997;137:490–4.

    Article  CAS  PubMed  Google Scholar 

  40. Heding LG, Ludvigsson J. Human proinsulin in insulin-treated juvenile diabetics. Acta Paediatr Scand Suppl 1977;48–52.

  41. Hartling SG, Lindgren F, Dahlqvist G, Persson B, Binder C. Elevated proinsulin in healthy siblings of IDDM patients independent of HLA identity. Diabetes 1989;38:1271–1274.

  42. Lindgren FA, Hartling SG, Dahlquist GG, Binder C, Efendic S, Persson BE. Glucose-induced insulin response is reduced and proinsulin response increased in healthy siblings of type 1 diabetic patients. Diabet Med 1991;8:638–643.

  43. Spinas GA, Snorgaard O, Hartling SG, Oberholzer M, Berger W. Elevated proinsulin levels related to islet cell antibodies in first-degree relatives of IDDM patients. Diabetes Care 1992;15:632–637.

  44. Heaton DA, Millward BA, Gray P, Tun Y, Hales CN, Pyke DA, Leslie RD. Evidence of beta cell dysfunction which does not lead on to diabetes: a study of identical twins of insulin dependent diabetics. Br Med J (Clin Res Ed) 1987;294:145–146.

  45. Heaton DA, Millward BA, Gray IP, Tun Y, Hales CN, Pyke DA, Leslie RD. Increased proinsulin levels as an early indicator of B-cell dysfunction in non-diabetic twins of type 1 (insulin-dependent) diabetic patients. Diabetologia 1988;31:182–184.

  46. Lindgren FA, Hartling SG, Persson BE, Roder ME, Snellman K, Binder C, Dahlquist G. Proinsulin levels in newborn siblings of type 1 (insulin-dependent) diabetic children and their mothers. Diabetologia 1993;36:560–563.

  47. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–62.

    Article  CAS  PubMed  Google Scholar 

  49. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–71.

    Article  PubMed  Google Scholar 

  50. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4.

    Article  CAS  PubMed  Google Scholar 

  51. miRBase [Internet]. [cited 2016 May 8]. Available from: http://www.mirbase.org/

  52. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.

    Article  CAS  PubMed  Google Scholar 

  53. Guay C, Menoud V, Rome S, Regazzi R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 2015;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lakhter AJ, Sims EK. Minireview: emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol. 2015;29:1535–48.

    Article  CAS  PubMed  Google Scholar 

  55. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–34.

    Article  CAS  PubMed  Google Scholar 

  56. Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8:e73798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bijkerk R, Duijs JMGJ, Khairoun M, Ter Horst CJH, van der Pol P, Mallat MJ, et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am J Transplant. 2015;15:1081–90.

    Article  CAS  PubMed  Google Scholar 

  58. Figliolini F, Cantaluppi V, Lena MD, Beltramo S, Romagnoli R, Salizzoni M, et al. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS ONE. 2014;9:e102521.

    Article  PubMed  PubMed Central  Google Scholar 

  59. de la Torre García N, Fernández-Durango R, Gómez R, Fuentes M, Roldán-Pallarés M, Donate J, et al. Expression of angiogenic microRNAs in endothelial progenitor cells from type 1 diabetic patients with and without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015;56:4090–8.

    Article  Google Scholar 

  60. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.

    Article  CAS  PubMed  Google Scholar 

  61. Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes. 2016;65:216–27.

    CAS  PubMed  Google Scholar 

  62. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS ONE. 2013;8:e55272.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.

    Article  CAS  PubMed  Google Scholar 

  65. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009;106:5813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Latreille M, Herrmanns K, Renwick N, Tuschl T, Malecki MT, McCarthy MI, et al. miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J Mol Med. 2015;93:1159–69. This article found that only a relatively small proportion (∼1%) of circulating miR-375 originates from β cells, suggesting utility of this miRNA as a biomarker of β cell death but not β cell mass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Osipova J, Fischer D-C, Dangwal S, Volkmann I, Widera C, Schwarz K, et al. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab. 2014;99:E1661–5.

    Article  CAS  PubMed  Google Scholar 

  68. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev. 2011;27:862–6.

    Article  CAS  PubMed  Google Scholar 

  69. Wu G-C, Pan H-F, Leng R-X, Wang D-G, Li X-P, Li X-M, et al. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev. 2015;14:798–805.

    Article  CAS  PubMed  Google Scholar 

  70. NONCODE [Internet]. [cited 2016 May 14]. Available from: http://www.noncode.org/

  71. Hakonarson H, Grant SFA, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448:591–4.

    Article  CAS  PubMed  Google Scholar 

  72. Plagnol V, Howson JMM, Smyth DJ, Walker N, Hafler JP, Wallace C, et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 2011;7:e1002216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42:68–71.

    Article  CAS  PubMed  Google Scholar 

  75. Motterle A, Gattesco S, Caille D, Meda P, Regazzi R. Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabetologia. 2015;58:1827–35.

    Article  CAS  PubMed  Google Scholar 

  76. Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015;4:102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.

    Article  CAS  PubMed  Google Scholar 

  78. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.

    Article  PubMed  Google Scholar 

  79. Stebbing J, Bower M, Syed N, Smith P, Yu V, Crook T. Epigenetics: an emerging technology in the diagnosis and treatment of cancer. Pharmacogenomics. 2006;7:747–57.

    Article  CAS  PubMed  Google Scholar 

  80. Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61:900–2.

    CAS  PubMed  Google Scholar 

  81. Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin gene expression is regulated by DNA methylation. PLoS One. 2009;4:e6953.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia. 2010;54:360–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Husseiny MI, Kuroda A, Kaye AN, Nair I, Kandeel F, Ferreri K. Development of a quantitative methylation-specific polymerase chain reaction method for monitoring beta cell death in type 1 diabetes. PLoS One. 2012;7:e47942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lebastchi J, Deng S, Lebastchi AH, Beshar I, Gitelman S, Willi S, et al. Immune therapy and β-cell death in type 1 diabetes. Diabetes. 2013;62:1676–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fisher MM, Perez Chumbiauca CN, Mather KJ, Mirmira RG, Tersey SA. Detection of islet β-cell death in vivo by multiplex PCR analysis of differentially methylated DNA. Endocrinology. 2013;154:3476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Usmani-Brown S, Lebastchi J, Steck AK, Beam C, Herold KC, Ledizet M. Analysis of β-cell death in type 1 diabetes by droplet digital PCR. Endocrinology. 2014;155:3694–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia. 2016;59:1021–9. The authors showed that during progression to Type 1 diabetes, the methylation status of the insulin gene in islets from NOD mice changed in a dynamic fashion. The authors also demonstrated that treatment of isolated islets with a cocktail of pro-inflammatory cytokines led to increased methylation of the insulin gene.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants UC4 DK104166 (to R.G.M and C.E-M.), DK093954 (to C.E-M.), K08 DK103983 (to E.K.S), VA Merit Award I01 BX001733 (to C.E-M.), JDRF grant SRA-2014-41 (to C.E.-M.), a JDRF postdoctoral fellowship (to F.S.), and support from the Ball Brothers Foundation and the George and Frances Ball Foundation. Work in the laboratory of RGM is also supported by NIH grants R01 DK60581 and R01 DK105588. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Veterans Affairs or the United States Government, or the JDRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmella Evans-Molina.

Ethics declarations

Conflict of Interest

Raghavendra G. Mirmira, Emily K. Sims, Farooq Syed, and Carmella Evans-Molina declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmira, R.G., Sims, E.K., Syed, F. et al. Biomarkers of β-Cell Stress and Death in Type 1 Diabetes. Curr Diab Rep 16, 95 (2016). https://doi.org/10.1007/s11892-016-0783-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0783-x

Keywords

Navigation