Skip to main content

Advertisement

Log in

Diabetic Kidney Disease in Adolescents With Type 2 Diabetes: New Insights and Potential Therapies

  • Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) and dialysis in the Western world. Early DKD, including microalbuminuria and renal hyperfiltration, is common in adolescents with type 2 diabetes (T2D). Furthermore, youth-onset T2D carries a higher risk of progressive DKD than adult-onset T2D of similar diabetes duration. DKD is characterized by a long clinically silent period without signs of disease. Therefore, a major challenge in preventing DKD is the difficulty in identifying high-risk T2D patients at an early stage. The Type 2 Diabetes in Adolescents and Youth (TODAY) study demonstrated a high initial prevalence that increased over time, irrespective of treatment arm. This key observation underscores the importance of discovering new therapeutic targets to supplement conventional management, in order to reduce DKD risk. In this review, we focus on early DKD in T2D and summarize potential novel biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maahs DM, Rewers M. Editorial: mortality and renal disease in type 1 diabetes mellitus—progress made, more to be done. J Clin Endocrinol Metab. 2006;91(10):3757–9.

    Article  PubMed  CAS  Google Scholar 

  2. Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 years mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetologia. 2010;53(11):2312–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al. United States renal data system 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012;59(1 Suppl 1):A7e1–420.

    Google Scholar 

  4. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. US renal data system 2010 annual data report. Am J Kidney Dis. 2011;57(1 Suppl 1):A8e1–526.

    Google Scholar 

  5. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA. 2010;304(6):649–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bjornstad P, Maahs DM, Cherney DZ, Cree-Green M, West A, Pyle L, et al. Insulin sensitivity is an important determinant of renal health in adolescents with type 2 diabetes. Diabetes Care. 2014;37:3033–9. First report of a relationship between insulin resistance and renal health in adolescents with type 2 diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. TODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41. Report of incident microalbuminuria in adolescents with type 2 diabetes in the TODAY clinical trial.

    Article  PubMed Central  CAS  Google Scholar 

  9. Alleyn CR, Volkening LK, Wolfson J, Rodriguez-Ventura A, Wood JR, Laffel LM. Occurrence of microalbuminuria in young people with type 1 diabetes: importance of age and diabetes duration. Diabet Med. 2010;27(5):532–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. 2006;29(6):1300–6.

    Article  PubMed  Google Scholar 

  11. Kiess W, Bottner A, Bluher S, Raile K, Galler A, Kapellen TM. Type 2 diabetes mellitus in children and adolescents--the beginning of a renal catastrophe? Nephrol Dial Transplant. 2004;19(11):2693–6.

    Article  PubMed  Google Scholar 

  12. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the diabetes control and complications trial cohort. Diabetes Care. 1999;22(1):99–111

  13. Yokoyama H, Okudaira M, Otani T, Takaike H, Miura J, Saeki A, et al. Existence of early-onset NIDDM Japanese demonstrating severe diabetic complications. Diabetes Care. 1997;20(5):844–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama H, Okudaira M, Otani T, Watanabe C, Takaike H, Miuira J, et al. High incidence of diabetic nephropathy in early-onset Japanese NIDDM patients: risk analysis. Diabetes Care. 1998;21(7):1080–5.

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez BL, Dabelea D, Liese AD, Fujimoto W, Waitzfelder B, Liu L, et al. Prevalence and correlates of elevated blood pressure in youth with diabetes mellitus: the SEARCH for diabetes in youth study. J Pediatr. 2010;157(2):245–51. e1.

    Article  PubMed  Google Scholar 

  16. Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, et al. Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2007;30(10):2593–8. Report demonstrating greater prevalence of elevated albuminuria in youth with type 2 diabetes compared to youth with type 1 diabetes.

    Article  PubMed  Google Scholar 

  17. Mottl AK, Kwon KS, Mauer M, Mayer-Davis EJ, Hogan SL, Kshirsagar AV. Normoalbuminuric diabetic kidney disease in the U.S. population. J Diabetes Complicat. 2013;27(2):123–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dwyer JP, Parving HH, Hunsicker LG, Ravid M, Remuzzi G, Lewis JB. Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND study. Cardiorenal Med. 2012;2(1):1–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27(1):195–200. Report demonstrating nonalbuminuric renal insufficiency in adults with type 2 diabetes.

    Article  PubMed  Google Scholar 

  20. So WY, Kong AP, Ma RC, Ozaki R, Szeto CC, Chan NN, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29(9):2046–52.

    Article  PubMed  Google Scholar 

  21. Kramer HJ, Nguyen QD, Curhan G, Hsu CY. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289(24):3273–7.

    Article  PubMed  Google Scholar 

  22. Svensson M, Sundkvist G, Arnqvist HJ, Bjork E, Blohme G, Bolinder J, et al. Signs of nephropathy may occur early in young adults with diabetes despite modern diabetes management: results from the nationwide population-based diabetes incidence study in Sweden (DISS). Diabetes Care. 2003;26(10):2903–9.

    Article  PubMed  Google Scholar 

  23. Adelman RD, Restaino IG, Alon US, Blowey DL. Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr. 2001;138(4):481–5.

    Article  CAS  PubMed  Google Scholar 

  24. Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, Arslanian S, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366(24):2247–56. Key article describing the TODAY study.

    Article  CAS  PubMed  Google Scholar 

  25. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116(2):288–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tantravahi J, Srinivas TR, Johnson RJ. Hyperfiltration: a sign of poor things to come in individuals with metabolic syndrome. Nat Clin Pract Nephrol. 2007;3(9):474–5.

    Article  PubMed  Google Scholar 

  27. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W, et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 2007;71(8):816–21.

    Article  CAS  PubMed  Google Scholar 

  28. Ritz E. Metabolic syndrome: an emerging threat to renal function. Clin J Am Soc Nephrol. 2007;2(5):869–71.

    Article  PubMed  Google Scholar 

  29. Ritz E. Metabolic syndrome and kidney disease. Blood Purif. 2008;26(1):59–62.

    Article  CAS  PubMed  Google Scholar 

  30. Melsom T, Mathisen UD, Ingebretsen OC, Jenssen TG, Njolstad I, Solbu MD, et al. Impaired fasting glucose is associated with renal hyperfiltration in the general population. Diabetes Care. 2011;34(7):1546–51. Report demonstrating a relationship between impaired fasting glucose and renal hyperfiltration in general population.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mauer M, Drummond K. The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes. 2002;51(5):1572–9.

    Article  CAS  PubMed  Google Scholar 

  32. Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36(10):1064–70.

    Article  CAS  PubMed  Google Scholar 

  33. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH. Diabetic nephropathy. Diabetes Care. 2003;26 Suppl 1:S94–8.

    PubMed  Google Scholar 

  34. Mogensen CE, Schmitz O. The diabetic kidney: from hyperfiltration and microalbuminuria to end-stage renal failure. Med Clin North Am. 1988;72(6):1465–92.

    CAS  PubMed  Google Scholar 

  35. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine albumin to creatinine ratio: a marker of early endothelial dysfunction in youth. J Clin Endocrinol Metab. 2015;100(9):3393–9. JC20152230.

    Article  CAS  PubMed  Google Scholar 

  36. Yamada T, Komatsu M, Komiya I, Miyahara Y, Shima Y, Matsuzaki M, et al. Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care. 2005;28(11):2733–8.

    Article  PubMed  Google Scholar 

  37. Bjornstad P, Maahs DM, Johnson RJ, Rewers M, Snell-Bergeon JK. Estimated insulin sensitivity predicts regression of albuminuria in type 1 diabetes. Diabet Med. 2014;32(2):257–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ. The clinical significance of hyperfiltration in diabetes. Diabetologia. 2010;53(10):2093–104.

    Article  CAS  PubMed  Google Scholar 

  39. Levine DZ, Iacovitti M, Robertson SJ, Mokhtar GA. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R975–81.

    Article  CAS  PubMed  Google Scholar 

  40. Ekinci EI, Hughes JT, Chatfield MD, Lawton PD, Jones GR, Ellis AG, et al. Hyperfiltration in indigenous Australians with and without diabetes. Nephrol Dial Transplant. 2015;30(11):1877–84.

    Article  PubMed  Google Scholar 

  41. Premaratne E, Verma S, Ekinci EI, Theverkalam G, Jerums G, MacIsaac RJ. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015;41(1):5–17. Comprehensive review of renal hyperfiltration in diabetic kidney disease.

  42. Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with type 1 diabetes. Nephrol Dial Transplant. 2015;30(10):1706–11.

    Article  PubMed  Google Scholar 

  43. American Diabetes Association. Standards of medical care in diabetes--2013. Diabetes Care. 2013;36 Suppl 1:S11–66.

    Article  PubMed Central  CAS  Google Scholar 

  44. KDOQI. Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.

    Google Scholar 

  45. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.

    Article  PubMed  Google Scholar 

  46. Sasson AN, Cherney DZ. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J Diabetes. 2012;3(1):1–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52(4):691–7.

    Article  CAS  PubMed  Google Scholar 

  48. Cherney DZ, Scholey JW, Miller JA. Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr Diabetes Rev. 2008;4(4):280–90.

    Article  CAS  PubMed  Google Scholar 

  49. Pruijm M, Wuerzner G, Maillard M, Bovet P, Renaud C, Bochud M, et al. Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African region. Nephrol Dial Transplant. 2010;25(7):2225–31.

    Article  CAS  PubMed  Google Scholar 

  50. Wuerzner G, Pruijm M, Maillard M, Bovet P, Renaud C, Burnier M, et al. Marked association between obesity and glomerular hyperfiltration: a cross-sectional study in an African population. Am J Kidney Dis. 2010;56(2):303–12.

    Article  PubMed  Google Scholar 

  51. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341(15):1127–33.

    Article  CAS  PubMed  Google Scholar 

  52. Maahs DM, Ogden LG, Kretowski A, Snell-Bergeon JK, Kinney GL, Berl T, et al. Serum cystatin C predicts progression of subclinical coronary atherosclerosis in individuals with type 1 diabetes. Diabetes. 2007;56(11):2774–9.

    Article  CAS  PubMed  Google Scholar 

  53. Shlipak MG, Matsushita K, Arnlov J, Inker LA, Katz R, Polkinghorne KR, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bjornstad P, Maahs DM, Rivard CJ, Pyle L, Rewers M, Johnson RJ, et al. Serum uric acid predicts vascular complications in adults with type 1 diabetes: the coronary artery calcification in type 1 diabetes study. Acta Diabetol. 2014;51(5):783–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bjornstad P, Cherney D, Maahs DM. Early diabetic nephropathy in type 1 diabetes: new insights. Curr Opin Endocrinol Diabetes Obes. 2014;21(4):279–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Pavkov ME, Knowler WC, Lemley KV, Mason CC, Myers BD, Nelson RG. Early renal function decline in type 2 diabetes. Clin J Am Soc Nephrol. 2012;7(1):78–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL. Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol. 2011;6(6):1427–35.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Bacchetta J, Cochat P, Rognant N, Ranchin B, Hadj-Aissa A, Dubourg L. Which creatinine and cystatin C equations can be reliably used in children? Clin J Am Soc Nephrol. 2011;6(3):552–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Berg UB, Nyman U, Back R, Hansson M, Monemi KA, Herthelius M, et al. New standardized cystatin C and creatinine GFR equations in children validated with inulin clearance. Pediatr Nephrol. 2015;30(8):1317–26.

    Article  PubMed  Google Scholar 

  62. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Fadrowski JJ, Furth SL. GFR estimation in children: questions and answers (and questions). Clin J Am Soc Nephrol. 2011;6(8):1810–2.

    Article  PubMed  Google Scholar 

  64. Shlipak MG, Katz R, Kestenbaum B, Fried LF, Newman AB, Siscovick DS, et al. Rate of kidney function decline in older adults: a comparison using creatinine and cystatin C. Am J Nephrol. 2009;30(3):171–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Cherney DZ, Sochett EB, Dekker MG, Perkins BA. Ability of cystatin C to detect acute changes in glomerular filtration rate provoked by hyperglycaemia in uncomplicated type 1 diabetes. Diabet Med. 2010;27(12):1358–65.

    Article  CAS  PubMed  Google Scholar 

  66. Maahs DM, Jalal D, McFann K, Rewers M, Snell-Bergeon JK. Systematic shifts in cystatin C between 2006 and 2010. Clin J Am Soc Nephrol. 2011;6(8):1952–5.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Maahs DM, Jalal D, Chonchol M, Johnson RJ, Rewers M, Snell-Bergeon JK. Impaired renal function further increases odds of 6 years coronary artery calcification progression in adults with type 1 diabetes: the CACTI study. Diabetes Care. 2013;36(9):2607–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Maahs DM, Prentice N, McFann K, Snell-Bergeon JK, Jalal D, Bishop FK, et al. Age and sex influence cystatin C in adolescents with and without type 1 diabetes. Diabetes Care. 2011;34(11):2360–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Zinman B, et al. Longitudinal changes in estimated and measured GFR in type 1 diabetes. J Am Soc Nephrol. 2014;25(4):810–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. de Boer IH. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):24–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Perrin NE, Berg UB. Estimated glomerular filtration rates cannot replace measured GFR in type 1 diabetes patients with hyperfiltration. Acta Paediatr. 2015;104(7):730–7.

    Article  PubMed  Google Scholar 

  72. Macisaac R, Ekinci E, Premaratne E, Lu ZX, Seah J, Li Y, et al. The chronic kidney disease-epidemiology collaboration (CKD-EPI) equation does not improve the underestimation of glomerular filtration rate (GFR) in people with diabetes and preserved renal function. BMC Nephrol. 2015;16:198.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Maahs DM, Bushman L, Kerr B, Ellis SL, Pyle L, McFann K, et al. A practical method to measure GFR in people with type 1 diabetes. J Diabet Complicat. 2014;28(5):667–73.

    Article  CAS  Google Scholar 

  74. Bjornstad P, Anderson PL, Maahs DM. Measuring glomerular filtration rate by iohexol clearance on filter paper is feasible in adolescents with type 1 diabetes in the ambulatory setting. Acta Diabetol. 2015. doi:10.1007/s00592-015-0764-6. Novel methodology measuring GFR in the ambulatory setting.

    Google Scholar 

  75. Pavkov ME, Nelson RG, Knowler WC, Cheng Y, Krolewski AS, Niewczas MA. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015;87(4):812–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Looker HC, Colombo M, Hess S, Brosnan MJ, Farran B, Dalton RN, et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015;88(4):888–96.

    Article  CAS  PubMed  Google Scholar 

  77. Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Stein S, Bachmann A, Lossner U, Kratzsch J, Bluher M, Stumvoll M, et al. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care. 2009;32(1):126–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Garg V, Kumar M, Mahapatra HS, Chitkara A, Gadpayle AK, Sekhar V. Novel urinary biomarkers in pre-diabetic nephropathy. Clin Exp Nephrol. 2015;19(5):895–900.

    Article  CAS  PubMed  Google Scholar 

  80. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  81. McKittrick IB, Bogaert Y, Nadeau K, Snell-Bergeon J, Hull A, Jiang T, et al. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes. Am J Physiol Ren Physiol. 2011;301(6):F1326–33.

    Article  CAS  Google Scholar 

  82. Uslu S, Efe B, Alatas O, Kebapci N, Colak O, Demirustu C, et al. Serum cystatin C and urinary enzymes as screening markers of renal dysfunction in diabetic patients. J Nephrol. 2005;18(5):559–67.

    CAS  PubMed  Google Scholar 

  83. Sheira G, Noreldin N, Tamer A, Saad M. Urinary biomarker N-acetyl-beta-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J Diabetes Metab Disord. 2015;14:4.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Weil EJ, Lemley KV, Mason CC, Yee B, Jones LI, Blouch K, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012;82(9):1010–7.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Do Nascimento JF, Canani LH, Gerchman F, Rodrigues PG, Joelsons G, Dos Santos M, et al. Messenger RNA levels of podocyte-associated proteins in subjects with different degrees of glucose tolerance with or without nephropathy. BMC Nephrol. 2013;14:214.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Hong CY, Hughes K, Chia KS, Ng V, Ling SL. Urinary alpha1-microglobulin as a marker of nephropathy in type 2 diabetic Asian subjects in Singapore. Diabetes Care. 2003;26(2):338–42.

    Article  CAS  PubMed  Google Scholar 

  87. Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Gluhovschi C, et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PLoS One. 2014;9(11):e112538.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Zurbig P, Jerums G, Hovind P, Macisaac R, Mischak H, Nielsen SE, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Maahs DM, Siwy J, Argiles A, Cerna M, Delles C, Dominiczak AF, et al. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology. PLoS One. 2010;5(9):e13051.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol. 2015;26(8):1999–2010.

    Article  CAS  PubMed  Google Scholar 

  92. Siwy J, Schanstra JP, Argiles A, Bakker SJ, Beige J, Boucek P, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29(8):1563–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Wallace JL, Ianaro A, Flannigan KL, Cirino G. Gaseous mediators in resolution of inflammation. Semin Immunol. 2015;27(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  94. Snijder PM, van den Berg E, Whiteman M, Bakker SJ, Leuvenink HG, van Goor H. Emerging role of gasotransmitters in renal transplantation. Am J Transplant. 2013;13(12):3067–75.

    Article  CAS  PubMed  Google Scholar 

  95. Kamijo H, Higuchi M, Hora K. Chronic inhibition of nitric oxide production aggravates diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rats. Nephron Physiol. 2006;104(1):12–22.

    Article  CAS  Google Scholar 

  96. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17(10):2664–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18(2):539–50.

    Article  CAS  PubMed  Google Scholar 

  98. Okumura M, Masada M, Yoshida Y, Shintaku H, Hosoi M, Okada N, et al. Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type II diabetic rats. Kidney Int. 2006;70(3):471–6.

    Article  CAS  PubMed  Google Scholar 

  99. Parvanova AI, Trevisan R, Iliev IP, Dimitrov BD, Vedovato M, Tiengo A, et al. Insulin resistance and microalbuminuria: a cross-sectional, case–control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes. 2006;55(5):1456–62.

    Article  CAS  PubMed  Google Scholar 

  100. De Cosmo S, Minenna A, Ludovico O, Mastroianno S, Di Giorgio A, Pirro L, et al. Increased urinary albumin excretion, insulin resistance, and related cardiovascular risk factors in patients with type 2 diabetes: evidence of a sex-specific association. Diabetes Care. 2005;28(4):910–5.

    Article  PubMed  Google Scholar 

  101. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Tai TY, et al. Association between insulin resistance and development of microalbuminuria in type 2 diabetes: a prospective cohort study. Diabetes Care. 2011;34(4):982–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. August P, Hardison RM, Hage FG, Marroquin OC, McGill JB, Rosenberg Y, et al. Change in albuminuria and eGFR following insulin sensitization therapy versus insulin provision therapy in the BARI 2D study. Clin J Am Soc Nephrol. 2014;9(1):64–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Hung SC, Chang YK, Liu JS, Kuo KL, Chen YH, Hsu CC, et al. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015;3(8):605–14.

    Article  CAS  PubMed  Google Scholar 

  104. Zoppini G, Targher G, Chonchol M, Ortalda V, Abaterusso C, Pichiri I, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012;35(1):99–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Altemtam N, Russell J, El Nahas M. A study of the natural history of diabetic kidney disease (DKD). Nephrol Dial Transplant. 2012;27(5):1847–54.

    Article  CAS  PubMed  Google Scholar 

  106. Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31(2):361–2.

    Article  CAS  PubMed  Google Scholar 

  107. Bjornstad P, Lanaspa MA, Ishimoto T, Kosugi T, Kume S, Jalal D, et al. Fructose and uric acid in diabetic nephropathy. Diabetologia. 2015;58(9):1993–2002.

    Article  CAS  PubMed  Google Scholar 

  108. Miao Y, Ottenbros SA, Laverman GD, Brenner BM, Cooper ME, Parving HH, et al. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the angiotensin II antagonist losartan trial. Hypertension. 2011;58(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  109. Momeni A, Shahidi S, Seirafian S, Taheri S, Kheiri S. Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients. Iran J Kidney Dis. 2010;4(2):128–32.

    PubMed  Google Scholar 

  110. Liu P, Chen Y, Wang B, Zhang F, Wang D, Wang Y. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3 years randomized parallel-controlled study. Clin Endocrinol (Oxf). 2014;83(4):475–82.

    Article  CAS  Google Scholar 

  111. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, et al. Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diabetes Rep. 2013;13(4):550–9.

    Article  CAS  Google Scholar 

  113. Bankir L, Kriz W. Adaptation of the kidney to protein intake and to urine concentrating activity: similar consequences in health and CRF. Kidney Int. 1995;47(1):7–24.

    Article  CAS  PubMed  Google Scholar 

  114. Gellai M, Silverstein JH, Hwang JC, LaRochelle Jr FT, Valtin H. Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats. Am J Physiol. 1984;246(6 Pt 2):F819–27.

    CAS  PubMed  Google Scholar 

  115. Bardoux P, Martin H, Ahloulay M, Schmitt F, Bouby N, Trinh-Trang-Tan MM, et al. Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A. 1999;96(18):10397–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. 1979;28(5):503–8.

    Article  CAS  PubMed  Google Scholar 

  117. Tallroth G, Ryding E, Ekman R, Agardh CD. The response of regulatory peptides to moderate hypoglycaemia of short duration in type 1 (insulin-dependent) diabetes mellitus and in normal man. Diabetes Res. 1992;20(3):73–85.

    CAS  PubMed  Google Scholar 

  118. Fenske W, Wanner C, Allolio B, Drechsler C, Blouin K, Lilienthal J, et al. Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J Am Soc Nephrol. 2011;22(4):782–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Riphagen IJ, Boertien WE, Alkhalaf A, Kleefstra N, Gansevoort RT, Groenier KH, et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care. 2013;36(10):3201–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Velho G, Bouby N, Hadjadj S, Matallah N, Mohammedi K, Fumeron F, et al. Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care. 2013;36(11):3639–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Boertien WE, Riphagen IJ, Drion I, Alkhalaf A, Bakker SJ, Groenier KH, et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia. 2013;56(8):1680–8. Report demonstrating copeptin as a risk factor for declining glomerular filtration rate in adults with type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  122. Berl T, Quittnat-Pelletier F, Verbalis JG, Schrier RW, Bichet DG, Ouyang J, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21(4):705–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  124. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  125. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  126. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1–9.

    Article  CAS  PubMed  Google Scholar 

  127. Bernardi S, Burns WC, Toffoli B, Pickering R, Sakoda M, Tsorotes D, et al. Angiotensin-converting enzyme 2 regulates renal atrial natriuretic peptide through angiotensin-(1–7). Clin Sci (Lond). 2012;123(1):29–37.

    Article  CAS  Google Scholar 

  128. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, et al. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Ren Physiol. 2014;306(8):F812–21.

    Article  CAS  Google Scholar 

  130. Marquez E, Riera M, Pascual J, Soler MJ. Renin-angiotensin system within the diabetic podocyte. Am J Physiol Ren Physiol. 2015;308(1):F1–10.

    Article  CAS  Google Scholar 

  131. Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, et al. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55(7):2132–9.

    Article  CAS  PubMed  Google Scholar 

  132. Wong DW, Oudit GY, Reich H, Kassiri Z, Zhou J, Liu QC, et al. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol. 2007;171(2):438–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Soler MJ, Wysocki J, Ye M, Lloveras J, Kanwar Y, Batlle D. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int. 2007;72(5):614–23.

    Article  CAS  PubMed  Google Scholar 

  134. Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, et al. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int. 2012;82(3):292–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int. 2008;74(12):1610–6.

    Article  CAS  PubMed  Google Scholar 

  136. Anguiano L, Riera M, Pascual J, Valdivielso JM, Barrios C, Betriu A, et al. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease. Nephrol Dial Transplant. 2015;30(7):1176–85.

    Article  PubMed  Google Scholar 

  137. Liu CX, Hu Q, Wang Y, Zhang W, Ma ZY, Feng JB, et al. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison with ACE inhibition. Mol Med. 2011;17(1–2):59–69.

    PubMed Central  PubMed  Google Scholar 

  138. Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Xu P, Costa-Goncalves AC, Todiras M, Rabelo LA, Sampaio WO, Moura MM, et al. Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension. 2008;51(2):574–80.

    Article  CAS  PubMed  Google Scholar 

  140. Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, et al. Beneficial effects of the activation of the angiotensin-(1–7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One. 2013;8(6):e66082.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Wilkins MR, Redondo J, Brown LA. The natriuretic-peptide family. Lancet. 1997;349(9061):1307–10.

    Article  CAS  PubMed  Google Scholar 

  143. Cao Z, Burrell LM, Tikkanen I, Bonnet F, Cooper ME, Gilbert RE. Vasopeptidase inhibition attenuates the progression of renal injury in subtotal nephrectomized rats. Kidney Int. 2001;60(2):715–21.

    Article  CAS  PubMed  Google Scholar 

  144. Taal MW, Nenov VD, Wong W, Satyal SR, Sakharova O, Choi JH, et al. Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone. J Am Soc Nephrol. 2001;12(10):2051–9.

    CAS  PubMed  Google Scholar 

  145. Benigni A, Zoja C, Zatelli C, Corna D, Longaretti L, Rottoli D, et al. Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney Int. 2004;66(5):1959–65.

    Article  CAS  PubMed  Google Scholar 

  146. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  CAS  Google Scholar 

  147. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  148. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2013;129(5):587–97.

    Article  PubMed  CAS  Google Scholar 

  149. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

David Z. Cherney was also supported by a Canadian Diabetes Association-KRESCENT Program Joint New Investigator Award.

Author Contributions

PB, DZC, DMM, and KJN wrote, contributed to discussion, and reviewed/edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Bjornstad.

Ethics declarations

Conflict of Interest

Petter Bjornstad and Kristen J. Nadeau declare that they have no conflict of interest. David Z. Cherney has received speaker honoraria from Janssen, AstraZeneca, Boehringer-Ingelheim, Lilly, and Merck and has received research grant support from AstraZeneca, Merck, Astellas, and Boehringer-Ingelheim. David M. Maahs is on the advisory board for Insulet and his institution has received research support from Dexcom and Medtronic.

Human and animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjornstad, P., Cherney, D.Z., Maahs, D.M. et al. Diabetic Kidney Disease in Adolescents With Type 2 Diabetes: New Insights and Potential Therapies. Curr Diab Rep 16, 11 (2016). https://doi.org/10.1007/s11892-015-0708-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0708-0

Keywords

Navigation