Skip to main content

Advertisement

Log in

Diabetic Gastroparesis: Functional/Morphologic Background, Diagnosis, and Treatment Options

  • Microvascular Complications—Neuropathy (D Ziegler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The regulation of gastrointestinal motility mainly involves the smooth muscle, neural (extrinsic and intrinsic), and hormonal elements, the glial cells, and the interstitial cells of Cajal. An orchestrated function of all these components is required for the appropriate propulsive movement of the food in the gastrointestinal tract. Gastroparesis, a pathological slowing-down of gastric emptying, is a result of the damage to the tissue elements involved in the regulation of motility. Gastroparesis is one of the well-known complications of long-standing diabetes mellitus. Although it is rarely a life-threatening complication, it has a deteriorating effect on the quality of life, leads to unpredictable oscillation of the blood glucose level, and increases the time required for the absorption of food and medicines. This review describes the clinical characteristics of diabetic gastroparesis and summarizes the organic and functional motility abnormalities caused by this complication. Finally, the currently available and potential future therapeutic approaches are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADRA1D:

Alpha-1-adrenergic receptor gene

AGE:

Advanced glycation end products

CCK:

Cholecystokinin

CYP2D6:

Cytochrome P450 2D6

FDA:

Food and Drug Administration

GCSI:

Gastroparesis Cardinal Symptom Index

GI:

Gastrointestinal

GIP:

Gastric inhibitory peptide

GLP-1:

Glucagon-like polypeptide-1

ICC:

Interstitial cells of Cajal

IGF-1:

Insulin-like growth factor-1

KCNH2:

Potassium voltage-gated channel, subfamily H [eag-related], member 2

NK-1 receptor:

Neurokinin-1 receptor

nNOS:

Nitric oxide synthase

NOD:

Non-obese diabetic

NO:

Nitric oxide

OEP:

National Health Insurance Fund Administration

PAGI-QOL:

Patient Assessment of Upper Gastrointestinal Disorders Quality of Life

PEJ:

Percutaneous endoscopic jejunostoma

SCF:

Stem cell factor

VIP:

Vasoactive intestinal polypeptide

5HT receptor:

5-hydroxytryptamine receptor

99mTc:

Metastable nuclear isotope of technetium 99

References

  1. Collins PJ et al. Role of the proximal and distal stomach in mixed solid and liquid meal emptying. Gut. 1991;32:615–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. O'Grady G et al. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):585–2.

    Article  Google Scholar 

  3. Wood JD. Neurogastroenterology and motility. In: Rhoades RA, Bell DR, editors. Principles of medical phisiology. 3rd edn. LWW; 2009. pp. 483–6.

  4. Kashyap P et al. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut. 2010;59:1716–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rundles RW. Diabetic neuropathy: general review with report of 125 cases. Medicine. 1945;24:111–60.

    Article  Google Scholar 

  6. Soykan I et al. Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci. 1998;43:2398–404.

    Article  CAS  PubMed  Google Scholar 

  7. Feldman M et al. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98:378–84.

    Article  CAS  PubMed  Google Scholar 

  8. Camilleri M. Clinical practice. Diabetic gastroparesis. N Engl J Med. 2007;356:820–9.

    Article  CAS  PubMed  Google Scholar 

  9. Jones KL et al. Predictors of delayed gastric emptying in diabetes. Diabetes Care. 2001;24:1264–9.

    Article  CAS  PubMed  Google Scholar 

  10. Barucha AE et al. Relationship between clinical features and gastric emptying disturbances in diabetes mellitus. Clin Endocrinol (Oxf). 2009;70(3):415–20.

    Article  Google Scholar 

  11. Ebert EC. Gastrointestinal complications of diabetes mellitus. Dis Mon. 2005;51(12):620–63.

    Article  PubMed  Google Scholar 

  12. Nowak TV et al. Highly variable gastric emptying in patients with insulin dependent diabetes mellitus. Gut. 1995;37:23–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kong MF et al. Natural history of diabetic gastroparesis. Diabetes Care. 1999;22:503–7.

    Article  CAS  PubMed  Google Scholar 

  14. Revicki DA et al. Development and validation of a patient-assessed gastroparesis symptom severity measure: the Gastroparesis Cardinal Symptom Index. Aliment Pharmacol Ther. 2003;18:141–50.

    Article  CAS  PubMed  Google Scholar 

  15. De la Loge C et al. Cross-cultural development and validation of a self-administered questionnaire to assess quality of life in upper gastrointestinal disorders. Qual Life Res. 2004;13:1751–62.

    Article  PubMed  Google Scholar 

  16. Bytzer P et al. Prevalence of gastrointestinal symptoms associated with diabetes mellitus. Arch Intern Med. 2001;161:1989–96.

    Article  CAS  PubMed  Google Scholar 

  17. Hasler WL. Type 1 diabetes and gastroparesis: diagnosis and treatment. Curr Gastroenterol Rep. 2007;9:261–9.

    Article  PubMed  Google Scholar 

  18. Ordog T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20:8–18.

    Article  CAS  PubMed  Google Scholar 

  19. Intagliata N et al. Gastroparesis in type 2 diabetes mellitus: prevalence, etiology, diagnosis, and treatment. Curr Gastroenterol Rep. 2007;9:270–9.

    Article  PubMed  Google Scholar 

  20. Watkins CC et al. Insulin restores neuronal nitric oxide synthase expression and function that lost in diabetic gastropathy. J Clin Invest. 2000;106(3):373–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ordog T et al. Cellular pathogenesis of diabetic gastroenteropathy. Minerva Gastroenterol Dietol. 2009;55(3):315–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kong MF et al. Gastric emptying in diabetes mellitus: relationship to blood-glucose control. Clin Geriatr Med. 1999;15:321–38.

    CAS  PubMed  Google Scholar 

  23. Koch KL et al. Diabetic gastroparesis: comparison of clinical features in patients with Type 2 (T2DM) and Type 1 (T1DM) diabetes mellitus [abstract]. Am J Gastroenterol. 2009;104(Suppl3):S56.

    Google Scholar 

  24. Izbéki F et al. The clinical picture, diagnosis and therapy of gastrointestinal autonomic neuropathy. In: Kempler P, Várkonyi T, editors. Neuropathies. A global clinical guide. Budapest: Zafír Press - Mona Lib Kft; 2012. p. 131–50.

    Google Scholar 

  25. MacGregor IL et al. The effect of acute hyperglycemia on gastric emptying in man. Gastroenterology. 1976;70:190–6.

    CAS  PubMed  Google Scholar 

  26. Jebbink RJ et al. Hyperglycaemia induces abnormalities of gastric myoelectrical activity in patients with type I diabetes mellitus. Gastroenterology. 1994;107(5):1994–9.

    Google Scholar 

  27. Horváth VJ et al. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial Cells of cajal in the murine stomach. Diabetes. 2005;54:1528–33.

    Article  PubMed  Google Scholar 

  28. Schvarcz E et al. Physiological hyperglycaemia slows gastric emptying in normal subjects and in patients with insulin-dependent diabetes mellitus. Gastroenterology. 1997;113(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  29. Vittal H et al. Mechanisms of disease: the pathological basis of gastroparesis–a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol. 2007;4(6):336–46.

    Article  CAS  PubMed  Google Scholar 

  30. Camilleri M et al. Relationship between impaired gastric emptying and abnormal gastrointestinal motility. Gastroenterology. 1986;91:94–9.

    CAS  PubMed  Google Scholar 

  31. Hirst GD et al. Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol. 2006;576:659–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Parkman HP et al. American gastroenterological association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004;127:1592–622.

    Article  PubMed  Google Scholar 

  33. Nishikawa T et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  CAS  PubMed  Google Scholar 

  34. Choi KM et al. Differences in protein expression between diabetic NOD mice with and without delayed gastric emptying. Gastroenterology. 2007;132:A-112.

    Google Scholar 

  35. Choi KM et al. Regulation of interstitial cells of Cajal in the mouse gastric body by neuronal nitric oxide. Neurogastroenterol Motil. 2007;19:585–95.

    Article  CAS  PubMed  Google Scholar 

  36. Harberson J et al. Gastric neuromuscular pathology in gastroparesis: analysis of full-thickness antral biopsies. Dig Dis Sci. 2010;10:359–70.

    Article  Google Scholar 

  37. Grover M et al. Clinical-histological associations in gastroparesis: results from the Gastroparesis Clinical Research Consortium. Neurogastroenterol Motil. 2012;24(6):531–40.

    Article  CAS  PubMed  Google Scholar 

  38. Selim MM et al. Gastric mucosal nerve density: a biomarker for diabetic autonom neuropathy? Neurology. 2010;75(11):973–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gover M, NIDDK Gastroparesis Clinical Research Consortium, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140(5):1575–85.

    Article  Google Scholar 

  40. Horváth VJ et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of Cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759–70.

    Article  PubMed  Google Scholar 

  41. Wu JJ et al. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384–401.

    Article  CAS  PubMed  Google Scholar 

  42. Lorincz A et al. Progenitors of interstitial cells of Cajal in the postnatal murine stomach. Gastroenterology. 2008;134(4):1083–93.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Izbeki F et al. Loss of Kitlow progenitors, reduced stem cell factor and high oxidative stress underlie gastric dysfunction in progeric mice. J Physiol. 2010;588(16):3101–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kempler P et al. On behalf of the Toronto Consensus Panel on Diabetic Neuropathy Gastrointestinal autonomic neuropathy, erectile-, bladder- and sudomotor dysfunction in patients with diabetes mellitus: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:665–77.

    Article  Google Scholar 

  45. Oh JH et al. Recent advances in the pathophysiology and treatment of gastroparesis. J Neurogastroenterol Motil. 2013;19(1):18–24.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Hasler WL. Gastroparesis: pathogenesis, diagnosis and management. Nat Rev Gastroenterol Hepatol. 2011;8(8):438–53.

    Article  CAS  PubMed  Google Scholar 

  47. Bolinder J et al. Autonomic neuropathy is associated with impaired pancreatic polypeptide and neuropeptide Y responses to insulin-induced hypoglycaemia in Type I diabetic patients. Diabetologia. 2002;45(7):1043–4.

    Article  CAS  PubMed  Google Scholar 

  48. Kempler P, EURODIAB IDDM Complications Study Group, et al. Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM Complications Study. Diabet Med. 2002;19(11):900–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chang J et al. A 25-year longitudinal evaluation of gastric emptying in diabetes. Diabetes Care. 2012;35(12):2594–6.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lam WF et al. Hyperglycemia reduces gastric secretory and plasma pancreatic polypeptide responses to modified sham feeding in humans. Digestion. 1993;54:48–53.

    Article  CAS  PubMed  Google Scholar 

  51. Yeap BB et al. Hyperglycemia affects cardiovascular autonomic nerve function in normal subjects. Diabetes Care. 1996;19(8):880–2.

    Article  CAS  PubMed  Google Scholar 

  52. Várkonyi T et al. Manifestations of diabetic polyneuropathy in the digestive tract and the central nervous system. Diabetol Hung. 2002;10 suppl 2:44–50.

    Google Scholar 

  53. Pavy-Le Traon A et al. Cardiovascular autonomic neuropathy and other complications in type 1 diabetes. Clin Auton Res. 2010;20(3):153–60.

    Article  PubMed  Google Scholar 

  54. Lelic D et al. The brain networks encoding visceral sensation in patients with gastrointestinal symptoms due to diabetic neuropathy. Neurogastroenterol Motil. 2014;26(1):46–58.

    Article  CAS  PubMed  Google Scholar 

  55. Brock C et al. Peripheral and central nervous contribution to gastrointestinal symptoms in diabetic patients with autonomic neuropathy. Eur J Pain. 2012;17:820–31.

    Article  PubMed  Google Scholar 

  56. Várkonyi T et al. Severity of autonomic and sensory neuropathy and the impairment of visual- and auditory-evoked potentials in type 1 diabetes. Is there a relationship? Diabetes Care. 2006;29:2325–6.

    Article  PubMed  Google Scholar 

  57. Punkkinen J et al. Upper abdominal symptoms in patients with Type 1 diabetes: unrelated to impairment in gastric emptying caused by autonomic neuropathy. Diabet Med. 2008;25(5):570–7.

    Article  CAS  PubMed  Google Scholar 

  58. Søfteland E et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2013. doi:10.1016/j.jdiacomp.2013.10.009.

    PubMed  Google Scholar 

  59. Chang J et al. Diabetic gastroparesis-backwards and forwards. J Gastroenterol Hepatol. 2011;26 Suppl 1:46–57.

    Article  PubMed  Google Scholar 

  60. Konturek JW et al. Effects of nitric oxide on antral motility and gastric emptying in humans. Eur J Gastroenterol Hepatol. 1995;7(2):97–102.

    CAS  PubMed  Google Scholar 

  61. Maner WL et al. Diabetes induces sex-dependent changes in neuronal nitric oxide synthase dimerization and function in the rat gastric antrum. Am J Physiol Gastrointest Liver Physiol. 2007;292:725–33.

    Google Scholar 

  62. Micci MA et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology. 2005;129(6):1817–24.

    Article  CAS  PubMed  Google Scholar 

  63. Pala L et al. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in different glucose tolerance conditions. Diabet Med. 2010;27(6):691–5.

    Article  CAS  PubMed  Google Scholar 

  64. Ariga H et al. Ghrelin accelerates gastric emptying via early manifestation of antro-pyloric coordination in conscious rats. Regul Pept. 2008;146(1–3):112–6.

    Article  CAS  PubMed  Google Scholar 

  65. Falkén Y et al. Actions of prolonged ghrelin infusion on gastrointestinal transit and glucose homeostasis in humans. Neurogastroenterol Motil. 2010;22(6):192–200.

    Article  Google Scholar 

  66. Kojima M et al. Ghrelin: structure and function. Physiol Rev. 2005;85(2):495–522.

    Article  CAS  PubMed  Google Scholar 

  67. Gaddipati KV et al. Abnormal ghrelin and pancreatic polypeptides responses in gastroparesis. Dig Dis Sci. 2006;51(8):1339–46.

    Article  CAS  PubMed  Google Scholar 

  68. Kan M et al. Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy. J Neuropathol Exp Neurol. 2012;71(6):494–510.

    Article  CAS  PubMed  Google Scholar 

  69. Sam AH et al. Selective ablation of peptide YY cells in adult mice reveals their role in beta cell survival. Gastroenterology. 2012;143(2):459–69.

    Article  CAS  PubMed  Google Scholar 

  70. Rühl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17:777–9.

    Article  PubMed  Google Scholar 

  71. Nezami BG. Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep. 2010;12:358–5.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Aubé AC et al. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut. 2006;55(5):630–7.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Abdo H et al. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 2010;24(4):1082–94.

    Article  CAS  PubMed  Google Scholar 

  74. Chandrasekharan B et al. Diabetes and the enteric nervous system. Neurogastroenterol Motil. 2007;19(12):951–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Abell TL et al. Consensus recommendations for gastric emptying scintigraphy: a joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. J Nucl Med Technol. 2008;36:44–54.

    Article  PubMed  Google Scholar 

  76. Gilja OH. Ultrasound of the stomach – the EUROSON lecture 2006. Ultraschall Med. 2007;28:32–9.

    Article  CAS  PubMed  Google Scholar 

  77. Marzio L et al. Evaluation of the use of ultrasonography in the study of liquid gastric emptying. Am J Gastroenterol. 1989;84:496–500.

    CAS  PubMed  Google Scholar 

  78. Stevens JE et al. Measurement of gastric emptying of a high-nutrient liquid by 3D ultrasonography in diabetic gastroparesis. Neurogastroenterol Motil. 2011;23:220–5.

    Article  CAS  PubMed  Google Scholar 

  79. Olausson EA et al. Small particle size of a solid meal increases gastric emptying and late postprandial glycaemic response in diabetic subjects with gastroparesis. Diabetes Res Clin Pract. 2008;80:231–7.

    Article  CAS  PubMed  Google Scholar 

  80. Perkel MS et al. Metoclopramide therapy in patients with delayed gastric emptying: a randomized, double-blind study. Dig Dis Sci. 1979;24:662–6.

    Article  CAS  PubMed  Google Scholar 

  81. Van Thiel DH. Effect of metoclopramide on gastric liquid emptying in patients with diabetic gastroparesis. Dig Dis Sci. 1985;30:10–5.

    Article  PubMed  Google Scholar 

  82. Ricci DA et al. Effect of metoclopramide in diabetic gastroparesis. J Clin Gastroenterol. 1985;7:25–32.

    Article  CAS  PubMed  Google Scholar 

  83. Henry P et al. Clinical response and side effects of metoclopramide associations with clinical, demographic, and pharmacogenetic parameters. J Clin Gastroenterol. 2012;46:494–503.

    Article  Google Scholar 

  84. Strauss SM et al. Non-cardiac QTc-prolonging drugs and the risk of sudden cardiac death. Eur Heart J. 2005;26:2007–12.

    Article  Google Scholar 

  85. Lin HC et al. Erythromycin accelerates solid emptying at the expense of gastric sieving. Dig Dis Sci. 1994;39:124–8.

    Article  CAS  PubMed  Google Scholar 

  86. Moshiree B et al. Comparison of the effect of azithromycin versus erythromycin on antroduodenal pressure profiles of patients with chronic functional gastrointestinal pain and gastroparesis. Dig Dis Sci. 2010;55(3):675–83.

    Article  CAS  PubMed  Google Scholar 

  87. Ray WA et al. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med. 2004;351:1089–96.

    Article  CAS  PubMed  Google Scholar 

  88. Várkonyi T et al. Diabetic neuropathy: new strategies for treatment. Diabetes Obes Metab. 2008;10:99–108.

    PubMed  Google Scholar 

  89. Ziegler D et al. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997;20(3):369–73.

    Article  CAS  PubMed  Google Scholar 

  90. Várkonyi T et al. Current options and perspectives in the treatment of diabetic neuropathy. Curr Pharm Des. 2013;19(27):4981–5007.

    Article  PubMed  Google Scholar 

  91. Wo JM et al. Randomised clinical trial: ghrelin agonist TZP101 relieves gastroparesis associated with severe nausea and vomiting—randomised clinical study subset data. Aliment Pharmacol Ther. 2011;33:679–88.

    Article  CAS  PubMed  Google Scholar 

  92. Camilleri M et al. A ghrelin agonist fails to show benefit in patients with diabetic gastroparesis: let's not throw the baby out with the bath water. Neurogastroenterol Motil. 2013;25(11):859–63.

    Article  CAS  PubMed  Google Scholar 

  93. Chong K et al. A case of severe, refractory diabetic gastroparesis managed by prolonged use of aprepitant. Nat Rev Endocrinol. 2009;5:285–8.

    Article  PubMed  Google Scholar 

  94. Abell T et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology. 2003;125(2):421–8.

    Article  PubMed  Google Scholar 

  95. Kim KH et al. Acupuncture for symptomatic relief of gastroparesis in a diabetic haemodialysis patient. Acupunct Med. 2010;28:101–3.

    Article  PubMed  Google Scholar 

  96. Lin Z et al. Association between changes in symptoms and gastric emptying in gastroparetic patients treated with gastric electrical stimulation. Neurogastroenterol Motil. 2008;20:464–70.

    Article  CAS  PubMed  Google Scholar 

  97. Abell TL et al. Gastric electrical stimulation in intractable symptomatic gastroparesis. Digestion. 2002;66:204–12.

    Article  PubMed  Google Scholar 

  98. McCallum RW et al. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology. 1998;114:456–61.

    Article  CAS  PubMed  Google Scholar 

  99. Fontana RJ et al. Jejunostomy tube placement in refractory diabetic gastroparesis: a retrospective review. Am J Gastroenterol. 1996;91:2174–8.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Viktor J. Horváth, Ferenc Izbéki, Csaba Lengyel, Péter Kempler, and Tamás Várkonyi declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor J. Horváth.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, V.J., Izbéki, F., Lengyel, C. et al. Diabetic Gastroparesis: Functional/Morphologic Background, Diagnosis, and Treatment Options. Curr Diab Rep 14, 527 (2014). https://doi.org/10.1007/s11892-014-0527-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0527-8

Keywords

Navigation