Skip to main content

Advertisement

Log in

Visual Dysfunction Associated with Diabetic Retinopathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is a leading cause of blindness and is commonly viewed as a vascular complication of diabetes mellitus. However, diabetes mellitus causes visual dysfunction before the onset of clinically visible microvascular changes associated with diabetic retinopathy. Thus, viewing diabetic retinopathy more generally as a neurovascular disease may lead to an improved understanding of the mechanisms responsible for vision loss. This article reviews the impact of diabetes mellitus on inner and outer retinal visual and electrophysiologic function and advocates for a multimodal approach to the study of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group [no authors listed]. Ophthalmology 1991, 98(5 Suppl):766–785.

    Google Scholar 

  2. Diabetic Retinopathy Clinical Research Network: A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008, 115:1447–1449, 1449.e1441–1449.e1410.

    Google Scholar 

  3. Beck RW, Edwards AR, Aiello LP, et al.: Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol 2009, 127:245–251.

    Article  PubMed  Google Scholar 

  4. Aiello LP, Edwards AR, Beck RW, et al.: Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2010, 117:946–953.

    Article  PubMed  Google Scholar 

  5. Scott IU, Edwards AR, Beck RW, et al.: A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 2007, 114:1860–1867.

    Article  PubMed  Google Scholar 

  6. •• Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, et al.: Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010, 117:1064–1077.e35. This article demonstrates ranibizumab in combination improves vision in patients with DME. It provides hope for treatments of DME that may preserve vision better than laser, which ablates the retina.

    Article  PubMed  Google Scholar 

  7. Nguyen QD, Shah SM, Heier JS, et al.: Primary end point (six months) results of the Ranibizumab for Edema of the mAcula in diabetes (READ-2) study. Ophthalmology 2009, 116:2175–2181.e1.

    Article  PubMed  Google Scholar 

  8. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group [no authors listed]. Ophthalmology 1981, 88:583–600.

  9. Bresnick GH: Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 1986, 104:989–990.

    CAS  PubMed  Google Scholar 

  10. •• Gardner T, Abcouwer S, Antonetti D, et al.: Pathogenesis of diabetic retinopathy. Arch Ophthalmol 2010, in press. Gardner et al. present the case that DR should be viewed as a neurodegenerative disease much as other complications of diabetes such as neuropathy are viewed. A comprehensive approach to the study of DR is proposed that integrates the best of basic and translational research.

  11. Wolter JR: Diabetic retinopathy. Am J Ophthalmol 1961, 51:1123–1141.

    CAS  PubMed  Google Scholar 

  12. Barber AJ, Antonetti DA, Kern TS, et al.: The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 2005, 46:2210–2218.

    Article  PubMed  Google Scholar 

  13. Barber AJ, Lieth E, Khin SA, et al.: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998, 102:783–791.

    Article  CAS  PubMed  Google Scholar 

  14. Gastinger MJ, Kunselman AR, Conboy EE, et al.: Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci 2008, 49:2635–2642.

    Article  PubMed  Google Scholar 

  15. Parravano M, Oddone F, Mineo D, et al.: The role of Humphrey Matrix testing in the early diagnosis of retinopathy in type 1 diabetes. Br J Ophthalmol 2008, 92:1656–1660.

    Article  CAS  PubMed  Google Scholar 

  16. Parikh R, Naik M, Mathai A, et al.: Role of frequency doubling technology perimetry in screening of diabetic retinopathy. Indian J Ophthalmol 2006, 54:17–22.

    Article  PubMed  Google Scholar 

  17. Sieving PA, Nino C: Scotopic threshold response (STR) of the human electroretinogram. Invest Ophthalmol Vis Sci 1988, 29:1608–1614.

    CAS  PubMed  Google Scholar 

  18. Aylward GW, Billson FA: The scotopic threshold response in diabetic retinopathy--a preliminary report. Aust N Z J Ophthalmol 1989, 17:369–372.

    Article  CAS  PubMed  Google Scholar 

  19. Caputo S, Di Leo MA, Falsini B, et al.: Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 1990, 13:412–418.

    Article  CAS  PubMed  Google Scholar 

  20. Bresnick GH, Palta M: Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol 1987, 105:929–933.

    CAS  PubMed  Google Scholar 

  21. Vadala M, Anastasi M, Lodato G, Cillino S: Electroretinographic oscillatory potentials in insulin-dependent diabetes patients: a long-term follow-up. Acta Ophthalmol Scand 2002 80:305–309.

    Article  PubMed  Google Scholar 

  22. Bresnick GH, Palta M: Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol 1987, 105:810–814.

    CAS  PubMed  Google Scholar 

  23. van Dijk HW, Kok PH, Garvin M, et al.: Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009, 50:3404–3409.

    Article  PubMed  Google Scholar 

  24. Van Dijk HW, Verbraak FD, Kok PH, et al.: Decreased retinal ganglion cell layer thickness in type 1 diabetic patients. Invest Ophthalmol Vis Sci 2010, 51:3660–3665.

    Article  PubMed  Google Scholar 

  25. Cabrera DeBuc D, Somfai GM: Early detection of retinal thickness changes in diabetes using optical coherence tomography. Med Sci Monit 2010, 16:MT15–MT21.

    PubMed  Google Scholar 

  26. Takahashi H, Goto T, Shoji T, et al.: Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol 2006, 142:88–94.

    Article  PubMed  Google Scholar 

  27. Henson DB, Williams DE: Normative and clinical data with a new type of dark adaptometer. Am J Optom Physiol Opt 1979, 56:267–271.

    CAS  PubMed  Google Scholar 

  28. Greenstein VC, Thomas SR, Blaustein H, et al.: Effects of early diabetic retinopathy on rod system sensitivity. Optom Vis Sci 1993, 70:18–23.

    Article  CAS  PubMed  Google Scholar 

  29. Holopigian K, Seiple W, Lorenzo M, Carr R: A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1992, 33:2773–2780.

    CAS  PubMed  Google Scholar 

  30. Abraham FA, Haimovitz J, Berezin M: The photopic and scotopic visual thresholds in diabetics without diabetic retinopathy. Metab Pediatr Syst Ophthalmol 1988, 11:76–77.

    CAS  PubMed  Google Scholar 

  31. Holopigian K, Greenstein VC, Seiple W, et al.: Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 1997, 38:2355–2365.

    CAS  PubMed  Google Scholar 

  32. Mantyjarvi M: Colour vision and dark adaptation in diabetic patients after photocoagulation. Acta Ophthalmol (Copenh) 1989, 67:113–118.

    Article  CAS  Google Scholar 

  33. Henson DB, North RV: Dark adaptation in diabetes mellitus. Br J Ophthalmol 1979, 63:539–541.

    Article  CAS  PubMed  Google Scholar 

  34. Pender PM, Benson WE, Compton H, Cox GB: The effects of panretinal photocoagulation on dark adaptation in diabetics with proliferative retinopathy. Ophthalmology 1981, 88:635–638.

    CAS  PubMed  Google Scholar 

  35. Arden GB, Wolf JE, Tsang Y: Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis. Vision Res 1998, 38:1723–1729.

    Article  CAS  PubMed  Google Scholar 

  36. Harris A, Arend O, Danis RP, et al.: Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol 1996, 80:209–213.

    Article  CAS  PubMed  Google Scholar 

  37. Holfort SK, Klemp K, Kofoed PK, et al.: Scotopic electrophysiology of the retina during transient hyperglycemia in type 2 diabetes. Invest Ophthalmol Vis Sci 2010, 51:2790–2794.

    Article  PubMed  Google Scholar 

  38. Verrotti A, Lobefalo L, Altobelli E, et al.: Static perimetry and diabetic retinopathy: a long-term follow-up. Acta Diabetol 2001, 38:99–105.

    Article  CAS  PubMed  Google Scholar 

  39. Bengtsson B, Heijl A, Agardh E: Visual fields correlate better than visual acuity to severity of diabetic retinopathy. Diabetologia 2005, 48:2494–2500.

    Article  CAS  PubMed  Google Scholar 

  40. Greenstein VC, Hood DC, Ritch R, et al.: S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 1989, 30:1732–1737.

    CAS  PubMed  Google Scholar 

  41. Cho NC, Poulsen GL, Ver Hoeve JN, Nork TM: Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol 2000, 118:1393–1400.

    CAS  PubMed  Google Scholar 

  42. Agardh E, Stjernquist H, Heijl A, Bengtsson B: Visual acuity and perimetry as measures of visual function in diabetic macular oedema. Diabetologia 2006, 49:200–206.

    Article  CAS  PubMed  Google Scholar 

  43. Frost-Larsen K, Larsen HW: Macular recovery time recorded by nyctometry--a screening method for selection of patients who are at risk of developing proliferative diabetic retinopathy. Results of a 5-year follow-up. Acta Ophthalmol Suppl 1985, 173:39–47.

    Article  CAS  PubMed  Google Scholar 

  44. Frost-Larsen K, Lund-Anderson C, Starup K: Macular recovery during onset and development of diabetic retinopathy in childhood and adolescence. Acta Ophthalmol (Copenh) 1989, 67:401–404.

    Article  CAS  Google Scholar 

Download references

Disclosure

This work was supported in part by American Diabetes Association (Alistair J. Barber), and Juvenile Diabetes Research Foundation (Gregory R. Jackson, Alistair J. Barber). No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, G.R., Barber, A.J. Visual Dysfunction Associated with Diabetic Retinopathy. Curr Diab Rep 10, 380–384 (2010). https://doi.org/10.1007/s11892-010-0132-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-010-0132-4

Keywords

Navigation