Skip to main content

Advertisement

Log in

Genetic susceptibility of diabetic retinopathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes continues to be a major source of morbidity and mortality among working-age adults nationally and internationally. The microvascular complications of diabetes, including diabetic retinopathy, account for a major proportion of disease-associated morbidity and likely contribute to macrovascular complications. Although glycemic control contributes to susceptibility for diabetic complications, some people with strict control develop these complications, whereas others with poor control remain complication free. This suggests a genetic contribution to disease development. Although many genes and proteins of vascular growth have been studied in association with diabetic retinopathy, no definitive major predisposing genes or functional consequences of genetic variants have been identified for microvascular complications of the disease. In this article, we review the studies done on candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Varma R, Macias GL, Torres M, et al.: Biologic risk factors associated with diabetic retinopathy: the Los Angeles Latino Eye Study. Ophthalmology 2007, 114:1332–1340.

    Article  PubMed  Google Scholar 

  2. Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet 2001, 17:502–510.

    Article  PubMed  CAS  Google Scholar 

  3. Yang Z, Camp NJ, Sun H, et al.: A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 2006, 314:992–993.

    Article  PubMed  CAS  Google Scholar 

  4. Dewan A, Liu M, Hartman S, et al.: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314:989–992.

    Article  PubMed  CAS  Google Scholar 

  5. Klein RJ, Zeiss C, Chew EY, et al.: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385–389.

    Article  PubMed  CAS  Google Scholar 

  6. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323.

    Article  PubMed  CAS  Google Scholar 

  7. International HapMap Consortium: A haplotype map of the human genome. Nature 2005, 437:1299–1320.

    Article  Google Scholar 

  8. Pritchard JK: Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001, 69:124–137.

    Article  PubMed  CAS  Google Scholar 

  9. Garcia CK, Wilund K, Arca M, et al.: Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292:1394–1398.

    Article  PubMed  CAS  Google Scholar 

  10. Harris MI, Klein R, Cowie CC, et al.: Is the risk of diabetic retinopathy greater in non-Hispanic blacks and Mexican Americans than in non-Hispanic whites with type 2 diabetes? A U.S. population study. Diabetes Care 1998, 21:1230–1235.

    Article  PubMed  CAS  Google Scholar 

  11. Warpeha KM, Chakravarthy U: Molecular genetics of microvascular disease in diabetic retinopathy. Eye 2003, 17:305–311.

    Article  PubMed  CAS  Google Scholar 

  12. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.

    Article  Google Scholar 

  13. Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  14. Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345.

    Article  PubMed  CAS  Google Scholar 

  15. Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.

    Article  PubMed  CAS  Google Scholar 

  16. Zeggini E, Weedon MN, Lindgren CM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1341.

    Article  PubMed  CAS  Google Scholar 

  17. Field LL: Genetic linkage and association studies of type I diabetes: challenges and rewards. Diabetologia 2002, 45:21–35.

    Article  PubMed  CAS  Google Scholar 

  18. Hanis CL, Hallman D: Genetics of diabetic retinopathy. Curr Diab Rep 2006, 6:155–161.

    Article  PubMed  CAS  Google Scholar 

  19. Aiello LP: Angiogenic pathways in diabetic retinopathy. N Engl J Med 2005, 353:839–841.

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe D, Suzuma K, Matsui S, et al.: Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005, 353:782–792.

    Article  PubMed  CAS  Google Scholar 

  21. Aiello LP, Avery RL, Arrigg PG, et al.: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994, 331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  22. Enge M, Bjarnegard M, Gerhardt H, et al.: Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002, 21:4307–4316.

    Article  PubMed  CAS  Google Scholar 

  23. Ladomery MR, Harper SJ, Bates DO: Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 2007, 249:133–142.

    Article  PubMed  CAS  Google Scholar 

  24. Robinson CJ, Stringer SE: The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001, 114:853–865.

    PubMed  CAS  Google Scholar 

  25. Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, Jozwiak L: Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant 2007, 22:827–832.

    Article  PubMed  CAS  Google Scholar 

  26. Suganthalakshmi B, Anand R, Kim R, et al.: Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis 2006, 12:336–341.

    PubMed  CAS  Google Scholar 

  27. Yang B, Cross DF, Ollerenshaw M, et al.: Polymorphisms of the vascular endothelial growth factor and susceptibility to diabetic microvascular complications in patients with type 1 diabetes mellitus. J Diabetes Complications 2003, 17:1–6.

    Article  PubMed  Google Scholar 

  28. Awata T, Inoue K, Kurihara S, et al.: A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002, 51:1635–1639.

    Article  PubMed  CAS  Google Scholar 

  29. Lip PL, Chatterjee S, Caine GJ, et al.: Plasma vascular endothelial growth factor, angiopoietin-2, and soluble angiopoietin receptor tie-2 in diabetic retinopathy: effects of laser photocoagulation and angiotensin receptor blockade. Br J Ophthalmol 2004, 88:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe D, Suzuma K, Suzuma I, et al.: Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 2005, 139:476–481.

    Article  PubMed  CAS  Google Scholar 

  31. Clarke M, Dodson PM: PKC inhibition and diabetic micro-vascular complications. Best Pract Res Clin Endocrinol Metab 2007, 21:573–586.

    Article  PubMed  CAS  Google Scholar 

  32. Chen J, Connor KM, Aderman CM, Smith LE: Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 2008, 118:526–533.

    PubMed  CAS  Google Scholar 

  33. Tong Z, Yang Z, Patel S, et al.: Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A 2008, 106:6998–7004.

    Article  Google Scholar 

  34. Fukumura D, Gohongi T, Kadambi A, et al.: Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 2001, 98:2604–2609.

    Article  PubMed  CAS  Google Scholar 

  35. Chen Y, Huang H, Zhou J, et al.: Polymorphism of the endothelial nitric oxide synthase gene is associated with diabetic retinopathy in a cohort of West Africans. Mol Vis 2007, 13:2142–2147.

    PubMed  Google Scholar 

  36. Abiko T, Abiko A, Clermont AC, et al.: Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 2003, 52:829–837.

    Article  PubMed  CAS  Google Scholar 

  37. Ceriello A: New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003, 26:1589–1596.

    Article  PubMed  CAS  Google Scholar 

  38. Sozmen EY, Sozmen B, Delen Y, Onat T: Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Arch Med Res 2001, 32:283–287.

    Article  PubMed  CAS  Google Scholar 

  39. Hudson BI, Hofmann MA, Bucciarelli L, et al.: Glycation and diabetes: The RAGE connection. Curr Sci 2002, 83:1515–1521.

    CAS  Google Scholar 

  40. Ramprasad S, Radha V, Mathias RA, et al.: Rage gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India. Eye 2007, 21:395–401.

    Article  PubMed  CAS  Google Scholar 

  41. Gardiner TA, Anderson HR, Stitt AW: Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 2003, 201:328–333.

    Article  PubMed  CAS  Google Scholar 

  42. Barile GR, Pachydaki SI, Tari SR, et al.: The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2005, 46:2916–2924.

    Article  PubMed  Google Scholar 

  43. Richeti F, Noronha RM, Waetge RT, et al.: Evaluation of AC(n) and C(-106)T polymorphisms of the aldose reductase gene in Brazilian patients with DM1 and susceptibility to diabetic retinopathy. Mol Vis 2007, 13:740–745.

    PubMed  CAS  Google Scholar 

  44. Demaine A, Cross D, Millward A: Polymorphisms of the aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000, 41:4064–4068.

    PubMed  CAS  Google Scholar 

  45. Kao YL, Donaghue K, Chan A, et al.: An aldose reductase intragenic polymorphism associated with diabetic retinopathy. Diabetes Res Clin Pract 1999, 46:155–160.

    Article  PubMed  CAS  Google Scholar 

  46. Girach A, Vignati L: Diabetic microvascular complications—can the presence of one predict the development of another? J Diabetes Complications 2006, 20:228–237.

    Article  PubMed  Google Scholar 

  47. Klein R, Klein BE: Relation of glycemic control to diabetic complications and health outcomes. Diabetes Care 1998, 21(Suppl 3):C39–C43.

    PubMed  Google Scholar 

  48. El-Asrar AM, Al-Rubeaan KA, Al-Amro SA, et al.: Retinopathy as a predictor of other diabetic complications. Int Ophthalmol 2001, 24:1–11.

    Article  PubMed  CAS  Google Scholar 

  49. Trevisan R, Vedovato M, Mazzon C, et al.: Concomitance of diabetic retinopathy and proteinuria accelerates the rate of decline of kidney function in type 2 diabetic patients. Diabetes Care 2002, 25:2026–2031.

    Article  PubMed  Google Scholar 

  50. Parving HH, Mauer M, Ritz E: Diabetic nephropathy. In The Kidney. Edited by Brenner BM. Philadelphia: Elsevier; 2004:1777–1818.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S., Chen, H., Tinkham, N.H. et al. Genetic susceptibility of diabetic retinopathy. Curr Diab Rep 8, 257–262 (2008). https://doi.org/10.1007/s11892-008-0046-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-008-0046-6

Keywords

Navigation