Skip to main content
Log in

Conjugated Bile Acids Associate with Altered Rates of Glucose and Lipid Oxidation after Roux-en-Y Gastric Bypass

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Laparoscopic Roux-en-Y gastric bypass (RYGB) induces a more favorable metabolic profile than expected by weight loss alone. In this study, we investigated the effect of RYGB on serum bile acid levels and their relation to clinical outcomes.

Methods

We included 30 obese patients who underwent RYGB (BMI = 46.1 ± 5.9 kg/m2). Clinical measurements and laboratory determinations were performed before surgery and 1 year after surgery. Fasting serum bile acids were measured by an enzymatic method and individual bile acids were quantified by HLPC-tandem mass spectrometry. Indirect calorimetry was performed to measure the rates of energy expenditure and substrate oxidation.

Results

Fasting total serum bile acid levels increased twofold after RYGB (pre, 3.68 ± 2.03 vs. post, 7.06 ± 9.65 μmol/l, +92 %, p = 0.002). This increase in total bile acids was accompanied by a decrease in conjugated bile acids, which correlated with decreased glucose oxidation (r = 0.571, p = 0.002) and with increased lipid oxidation (r = −0.626, p = 0.0004). The change in taurine-conjugated bile acids correlated with altered DIO2 mRNA expression in adipose tissue (r = −0.498, p = 0.013) potentially linking bile acid conjugation to substrate oxidation through DIO2.

Conclusions

Fasting serum bile acid levels increase after RYGB. More specifically, changes in bile acid conjugation after RYGB associate with altered energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

DIO2:

Type II iodothyronine deionidinase

FXR:

Farnesoid X-receptor

GIP:

Gastric inhibitory polypeptide

GLP1:

Glucagon-like peptide-1

HOMA-IR:

Homeostasis model of assessment-insulin resistance

HOMA-IS:

Homeostasis model of assessment-insulin sensitivity

LAGB:

Laparoscopic adjustable gastric banding

LBM:

Lean body mass

OGTT:

Oral glucose tolerance test

REE:

Resting energy expenditure

RQ:

Respiratory quotient

RYGB:

Laparoscopic Roux-en-Y gastric bypass

TGR5:

G protein-coupled bile acid receptor

TSH:

Thyroid stimulating hormone

References

  1. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  PubMed  CAS  Google Scholar 

  2. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  3. Weber M, Muller MK, Bucher T, et al. Laparoscopic gastric bypass is superior to laparoscopic gastric banding for treatment of morbid obesity. Ann Surg. 2004;240:975–82. discussion 982–3.

    Article  PubMed  Google Scholar 

  4. Nguyen NT, Slone JA, Nguyen XM, et al. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg. 2009;250:631–41.

    PubMed  Google Scholar 

  5. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    Article  PubMed  CAS  Google Scholar 

  6. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  Google Scholar 

  7. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  8. Korner J, Bessler M, Inabnet W, et al. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3:597–601.

    Article  PubMed  Google Scholar 

  9. Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.

    Article  PubMed  CAS  Google Scholar 

  10. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461–83.

    Article  PubMed  CAS  Google Scholar 

  11. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    Article  PubMed  CAS  Google Scholar 

  12. Bilz S, Samuel V, Morino K, et al. Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters. Am J Physiol Endocrinol Metab. 2006;290:E716–22.

    Article  PubMed  CAS  Google Scholar 

  13. Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281:11039–49.

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408–18.

    PubMed  CAS  Google Scholar 

  15. Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116:1102–9.

    Article  PubMed  CAS  Google Scholar 

  16. Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    Article  PubMed  CAS  Google Scholar 

  19. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329:386–90.

    Article  PubMed  CAS  Google Scholar 

  20. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  PubMed  CAS  Google Scholar 

  21. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;21:1365–8.

    Article  Google Scholar 

  22. Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17:1671–7.

    Article  CAS  Google Scholar 

  23. Pihlajamaki J, Gronlund S, Simonen M, et al. Cholesterol absorption decreases after Roux-en-Y gastric bypass but not after gastric banding. Metabolism. 2010;59:866–72.

    Article  PubMed  Google Scholar 

  24. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37:287–301.

    Article  PubMed  CAS  Google Scholar 

  25. da Rocha EE, Alves VG, da Fonseca RB. Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care. 2006;9:247–56.

    Article  PubMed  Google Scholar 

  26. Argmann CA, Houten SM, Champy MF, et al. Lipid and bile acid analysis. Curr Protoc Mol Biol. 2006;29:29B.2.1–29B.2.24.

    Google Scholar 

  27. Kohli R, Kirby M, Setchell KD, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299:652–6.

    Article  Google Scholar 

  28. de Castro Cesar M, de Lima Montebelo MI, Rasera Jr I, et al. Effects of Roux-en-Y gastric bypass on resting energy expenditure in women. Obes Surg. 2008;18:1376–80.

    Article  PubMed  Google Scholar 

  29. Bobbioni-Harsch E, Morel P, Huber O, et al. Energy economy hampers body weight loss after gastric bypass. J Clin Endocrinol Metab. 2000;85:4695–700.

    Article  PubMed  CAS  Google Scholar 

  30. Nakatani H, Kasama K, Oshiro T, et al. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism. 2009;58:1400–7.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao X, Peter A, Fritsche J, et al. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol Endocrinol Metab. 2009;296:E384–93.

    Article  PubMed  CAS  Google Scholar 

  32. Angelin B, Bjorkhem I, Einarsson K, et al. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Invest. 1982;70:724–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Päivi Turunen and Tiina Sistonen for their careful work in patient recruitment and laboratory analyses. We also greatly thank greatly Carole Jamey for the technical assistance on bile acid measurements.

Funding

This study was supported by the Finnish Diabetes Research Foundation (to JPI). JPI has an Academy of Finland Clinical Researcher fellowship (grant 120979 2008–2010 and 138006 2011–2013). JA acknowledges grant support of the EU Ideas program (ERC-2008-AdG-23118), the Swiss National Science Foundation (FNS), and the Ecole Polytechnique Fédérale de Lausanne.

Disclosure Statement

All contributing authors (M Simonen, N Dali-Youcef, T Kuulasmaa, S Venesmaa, P Käkelä, M Pääkkönen, M Hallikainen, M Kolehmainen, M Uusitupa, L Moilanen, M Laakso, H Gylling, ME Patti, J Auwerx and J Pihlajamäki) declare that they have no conflicts of interests.

Conflict of Interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Pihlajamäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonen, M., Dali-Youcef, N., Kaminska, D. et al. Conjugated Bile Acids Associate with Altered Rates of Glucose and Lipid Oxidation after Roux-en-Y Gastric Bypass. OBES SURG 22, 1473–1480 (2012). https://doi.org/10.1007/s11695-012-0673-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0673-5

Keywords

Navigation