Skip to main content

Advertisement

Log in

Gender Bias in Gastroparesis: Is Nitric Oxide the Answer?

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that gender-related differences are prominent in gastric motility functions in both health and disease. Women are more susceptible to gastroparesis than men. Though the mechanism(s) involved are not fully understood, impairment of the nitrergic system is one of the main factors responsible for the disease. Uncoupling of neuronal nitric oxide synthase (nNOS) causes a decreased synthesis of NO leading to a reduction in smooth muscle relaxation. Tetrahydrobiopterin (BH4) (an essential cofactor for nNOS) is a key regulator of nNOS activity for stomach dysfunction and gastroparesis. In addition, BH4 has been shown to be a potent antioxidant and anti-inflammatory agent. Well established by results from our laboratory, a diminished intracellular (BH4:total biopterin) ratio in diabetic female rats significantly impairs nNOS activity and function. Recent research has been focused on BH4 biosynthesis and gastroparesis because reduced BH4 cofactor levels can alter the production of NO by nNOS. Researchers are now paying more attention to the possibility of using BH4 as a therapeutic strategy in gastroparesis. The purpose of this review is to provide an overview of the regulation and function of nNOS by sex hormones and BH4 and its potential role in the treatment of gastroparesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkman HP, Yates K, Hasler WL, et al. Clinical features of idiopathic gastroparesis vary with sex, body mass, symptom onset, delay in gastric emptying, and gastroparesis severity. Gastroenterology. 2011;140:101–115.

    Article  PubMed  Google Scholar 

  2. Aytug N, Giral A, Imeryuz N, et al. Gender influence on jejunal migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 2001;280:G255–G263.

    PubMed  CAS  Google Scholar 

  3. Soffer EE, Thongsawat S, Ellerbroek S. Prolonged ambulatory duodeno-jejunal manometry in humans: normal values and gender effect. Am J Gastroenterol. 1998;93:1318–1323.

    Article  PubMed  CAS  Google Scholar 

  4. Knight LC, Parkman HP, Brown KL, et al. Delayed gastric emptying and decreased antral contractility in normal premenopausal women compared with men. Am J Gastroenterol. 1997;92:968–975.

    PubMed  CAS  Google Scholar 

  5. Chen TS, Doong ML, Chang FY, Lee SD, Wang PS. Effects of sex steroid hormones on gastric emptying and gastrointestinal transit in rats. Am J Physiol. 1995;268:G171–G176.

    PubMed  CAS  Google Scholar 

  6. Shah S, Nathan L, Singh R, Fu YS, Chaudhuri G. E2 and not P4 increases NO release from NANC nerves of the gastrointestinal tract: implications in pregnancy. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1546–R1554.

    PubMed  CAS  Google Scholar 

  7. Wang F, Zheng TZ, Li W, Qu SY, He DY. Action of progesterone on contractile activity of isolated gastric strips in rats. World J Gastroenterol. 2003;9:775–778.

    PubMed  CAS  Google Scholar 

  8. Kim NN. Sex steroid hormones in diabetes-induced sexual dysfunction: focus on the female gender. J Sex Med. 2009;3:239–246.

    Article  CAS  Google Scholar 

  9. Waseem S, Moshiree B, Draganov PV. Gastroparesis: symptoms, evaluation, and treatment. World J Gastroenterol. 2009;15:25–37.

    Article  PubMed  Google Scholar 

  10. Ma J, Rayner CK, Jones KL, Horowitz M. Diabetic gastroparesis: diagnosis and management. Drugs. 2009;69:971–986.

    Article  PubMed  CAS  Google Scholar 

  11. Camilleri M, Bharucha AE, Farrugia G. Epidemiology, mechanisms and management of diabetic gastroparesis. Clin Gastroenterol Hepatol. 2011;9:5–12.

    Article  PubMed  Google Scholar 

  12. Kashyap P, Farrugia G. Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut. 2010;59:1716–1726.

    Article  PubMed  CAS  Google Scholar 

  13. Gangula PR, Maner WL, Micci MA, Garfield RE, Pasricha PJ. Diabetes induces sex-dependent changes in neuronal nitric oxide synthase dimerization and function in the rat gastric antrum. Am J Physiol Gastrointest Liver Physiol. 2007;292:G725–G733.

    Article  PubMed  CAS  Google Scholar 

  14. Gangula PR, Mukhopadhyay S, Ravella K, et al. Tetrahydrobiopterin (BH4), a cofactor for nNOS, restores gastric emptying and nNOS expression in female diabetic rats. Am J Physiol Gastrointest Liver Physiol. 2010;298:G692–G699.

    Article  PubMed  CAS  Google Scholar 

  15. Sanders KM, Koh SD, Ward SM. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–343.

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Owyang C. Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? V. Remodeling of vagus and enteric neural circuitry after vagal injury. Am J Physiol Gastrointest Liver Physiol. 2003;285:G461–G469.

    PubMed  CAS  Google Scholar 

  17. Belai A, Lincoln J, Milner P, Burnstock G. Progressive changes in adrenergic, serotonergic, and peptidergic nerves in proximal colon of streptozotocin-diabetic rats. Gastroenterology. 1988;95:1234–1241.

    PubMed  CAS  Google Scholar 

  18. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol. 2003;38:421–430.

    Article  PubMed  CAS  Google Scholar 

  19. Cellek S. Point of NO return for nitrergic nerves in diabetes: a new insight into diabetic complications. Curr Pharm Des. 2004;10:3683–3695.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi T, Nakamura K, Itoh H, Sima AA, Owyang C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology. 1997;113:1535–1544.

    Article  PubMed  CAS  Google Scholar 

  21. Rayner CK, Samsom M, Jones KL, Horowitz M. Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 2001;24:371–381.

    Article  PubMed  CAS  Google Scholar 

  22. Ishiguchi T, Tada H, Nakagawa K, Yamamura T, Takahashi T. Hyperglycemia impairs antro-pyloric coordination and delays gastric emptying in conscious rats. Auton Neurosci. 2002;95:112–120.

    Article  PubMed  CAS  Google Scholar 

  23. Belai A, Calcutt NA, Carrington AL, Diemel LT, Tomlinson DR, Burnstock G. Enteric neuropeptides in streptozotocin-diabetic rats; effects of insulin and aldose reductase inhibition. J Auton Nerv Syst. 1996;58:163–169.

    Article  PubMed  CAS  Google Scholar 

  24. Vittal H, Farrugia G, Gomez G, Pasricha PJ. Mechanisms of disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nat Clin Pract Gastroenterol Hepatol. 2007;4:336–346.

    Article  PubMed  CAS  Google Scholar 

  25. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993;75:1273–1286.

    Article  PubMed  CAS  Google Scholar 

  26. Mashimo H, Kjellin A, Goyal RK. Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology. 2000;119:766–773.

    Article  PubMed  CAS  Google Scholar 

  27. Sharron H, Francis JLB, Cobin JD. cGMP dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–563.

    Article  Google Scholar 

  28. Münzel T, Daiber A, Ullrich V, Mülsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylate cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol. 2005;25:1551–1557.

    Article  PubMed  Google Scholar 

  29. Pall ML. Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO cycle. Med Hypotheses. 2007;69:821–825.

    Article  PubMed  CAS  Google Scholar 

  30. Iino S, Horiguchi K, Nojyo Y, Ward SM, Sanders KM. Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterol Motil. 2009;21:542–550.

    Article  PubMed  CAS  Google Scholar 

  31. Sarnelli G, Sifrim D, Janssens J, Tack J. Influence of sildenafil on gastric sensorimotor function in humans. Am J Physiol Gastrointest Liver Physiol. 2004;287:G988–G992.

    Article  PubMed  CAS  Google Scholar 

  32. Savidge TC. S-nitrosothiol signals in the enteric nervous system: lessons learnt from big brother. Front Neurosci. 2011;5:31.

    PubMed  Google Scholar 

  33. Jones RJ, Gao YT, Simone TM, Salerno JC, Smith SM. NADPH analog binding to constitutive nitric oxide activates electron transfer and NO synthesis. Nitric Oxide. 2006;14:228–237.

    Article  PubMed  CAS  Google Scholar 

  34. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  PubMed  CAS  Google Scholar 

  35. Laine R, Ortiz de Montellano PR. Neuronal nitric oxide synthase isoforms and μ are closely related calpain-sensitive proteins. Mol Pharmacol. 1998;54:305–312.

    PubMed  CAS  Google Scholar 

  36. Bender AT, Demady DR, Osawa Y. Ubiquitination of neuronal nitric oxide synthase in vitro and in vivo. J Biol Chem. 2000;275:17407–17411.

    Article  PubMed  CAS  Google Scholar 

  37. Cai S, Khoo J, Alp NG, Channon KM. Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia. 2005;48:1933–1940.

    Article  PubMed  CAS  Google Scholar 

  38. Alp NJ, Mussa S, Khoo J, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I over expression. J Clin Invest. 2003;112:725–735.

    PubMed  CAS  Google Scholar 

  39. Stroes E, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1997;99:41–46.

    Article  PubMed  CAS  Google Scholar 

  40. Maier W, Cosentino F, Lutolf RB, et al. Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J Cardiovasc Pharmacol. 2000;35:173–178.

    Article  PubMed  CAS  Google Scholar 

  41. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia. 2000;43:1435–1438.

    Article  PubMed  CAS  Google Scholar 

  42. Setoguchi S, Mohri M, Shimokawa H, Takeshita A. Tetrahydrobiopterin improves endothelial dysfunction in coronary microcirculation in patients without epicardial coronary artery disease. J Am Coll Cardiol. 2001;38:493–498.

    Article  PubMed  CAS  Google Scholar 

  43. Heitzer T, Brockhoff C, Mayer B, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res. 2000;86:E36–E41.

    PubMed  CAS  Google Scholar 

  44. Serova LI, Filipenko M, Schilt N, Veerasirikul M, Sabban EL. Estrogen-triggered activation of GTP cyclohydrolase 1 gene expression: role of estrogen receptor subtypes and interaction with cyclic AMP. Neuroscience. 2006;140:1253–1263.

    Article  PubMed  CAS  Google Scholar 

  45. Lam KK, Lee YM, Hsiao G, Chen SY, Yen MH. Estrogen therapy replenishes vascular tetrahydrobiopterin and reduces oxidative stress in ovariectomized rats. Menopause. 2006;13:294–302.

    Article  PubMed  Google Scholar 

  46. Miyazaki-Akita A, Hayashi T, Ding QF, et al. 17beta-estradiol antagonizes the down-regulation of endothelial nitric-oxide synthase and GTP cyclohydrolase I by high glucose: relevance to postmenopausal diabetic cardiovascular disease. J Pharmacol Exp Ther. 2007;320:591–598.

    Article  PubMed  CAS  Google Scholar 

  47. Gangula PR, Reed L, Yallampalli C. Antihypertensive effects of flutamide in rats that are exposed to a low-protein diet in utero. Am J Obstet Gynecol. 2005;192:952–960.

    Article  PubMed  CAS  Google Scholar 

  48. Gangula PR, Garfield RE, Pasricha PJ. 17-beta estradiol attenuates delayed gastric emptying and decreased neuronal nitric oxide synthase alpha (nNOS) expression in female diabetic rats. Gastroenterology. 2008;134:A-247.

    Article  Google Scholar 

  49. Verrengia M, Sachdeva P, Gaughan J, Fisher RS, Parkman HP. Variation of symptoms during the menstrual cycle in female patients with gastroparesis. Neurogastroenterol Motil. (Epub ahead of print). doi:10.1111/j.1365-2982.2011.01681.x

  50. Shah S, Hobbs A, Singh R, Cuevas J, Ignarro L, Chaudhuri G. Gastrointestinal motility during pregnancy: role of nitrergic component of NANC nerves. Am J Physiol Int Comp Physiol. 2000;279:R1478–R1485.

    CAS  Google Scholar 

  51. Hutson WR, Roehrkasse RL, Wald A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology. 1989;96:11–17.

    PubMed  CAS  Google Scholar 

  52. Gangula PRR, Mukhopadhyay S, Pasricha PJ, Ravella P. Sepiapterin reverses the changes in gastric nNOS dimerization and function in diabetic gastroparesis. Neurogastroenterol Motil. 2010;22:1325–1331.

    Article  PubMed  CAS  Google Scholar 

  53. Grover M, Farrugia G, Lurken MS, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140:1575–1585.

    Article  PubMed  CAS  Google Scholar 

  54. Gangula PR, Chinnathambi V, Hale A, Mukhopadhyay S, Channon K, Ravella K. Impairment of nitrergic system and delayed gastric emptying in low-density lipoprotein receptor deficient (LDLR-KO) female mice. Neurogastroenterol Motil. (Epub ahead of print). doi:10.1111/j.1365-2982.2011.01695.x

  55. Kashyap P, Farrugia G. Oxidative stress: key player of gastrointestinal complications of diabetes. Neurogastroenterol Motil. 2011; 111–114.

Download references

Acknowledgments

This research was supported in part by P60DK020593 pilot project funds (PG), NIH-NIDDK R21DKO76704 (PG), RCMI G12RR03032 provided to PG as start-up funds at Meharry Medical College, Nashville, TN, USA.

Conflict of interest

Dr. Gangula (through the University of Texas Medical Branch, Galveston, TX) has filed a patent application for the use of BH4 in gastroparesis subjects. Drs. Gangula, Sekhar and Mukhopadhyay prepared this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. R. Gangula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangula, P.R.R., Sekhar, K.R. & Mukhopadhyay, S. Gender Bias in Gastroparesis: Is Nitric Oxide the Answer?. Dig Dis Sci 56, 2520–2527 (2011). https://doi.org/10.1007/s10620-011-1735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1735-6

Keywords

Navigation