Skip to main content

Advertisement

Log in

Amino acids: metabolism, functions, and nutrition

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acids

BCAA:

Branched-chain amino acids

EAA:

Nutritionally essential amino acids

eIF:

Eukaryotic translation initiation factor

mTOR:

Mammalian target of rapamycin

NEAA:

Nutritionally non-essential amino acids

NO:

Nitric oxide

PDV:

Portal-drained viscera

References

  • Baker DH (2008) Advances in protein-amino acid nutrition of poultry. Amino Acids. doi:10.1007/s00726-008-0198-3

  • Ban H, Shigemitsu K, Yamatsuji T et al (2004) Arginine and leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med 13:537–543

    PubMed  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Brasse-Lagnel C, Fairand A, Lavoinne A, Husson A (2003) Glutamine stimulates argininosuccinate synthetase gene expression through O-glycosylation of Sp1 in Caco-2 cells. J Biol Chem 278:52504–52510

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT (2001) Amino acids, then and now—a reflection on Sir Hans Kreb’s contribution to nitrogen metabolism. IUBMB Life 52:265–270

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Yin YL, Jobgen WS et al (2007) In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Chen L, Li P, Wang J et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids. doi:10.1007/s00726-009-0268-1

  • Clowes EJ, Aherne FX, Baracos VE (2005) Skeletal muscle protein mobilization during the progression of lactation. Am J Physiol Endocrinol Metab 288:E564–E572

    Article  PubMed  CAS  Google Scholar 

  • Coeffier M, Claeyssens S, Hecketsweiler B et al (2003) Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am J Physiol 285:G266–G273

    CAS  Google Scholar 

  • Corl BA, Odle J, Niu X et al (2008) Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138:24–29

    PubMed  CAS  Google Scholar 

  • Cox JD (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York, pp 1–643

    Google Scholar 

  • Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10:620–626

    Article  PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care 12:78–85

    Article  PubMed  CAS  Google Scholar 

  • Davis PK, Wu G (1998) Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol B 119:527–537

    Article  PubMed  CAS  Google Scholar 

  • Dekaney CM, Wu G, Yin YL, Jaeger LA (2008) Regulation of ornithine aminotransferase gene expression and activity by all-trans retinoic acid in Caco-2 intestinal epithelial cells. J Nutr Biochem 19:674–681

    Article  PubMed  CAS  Google Scholar 

  • Deng ZY, Zhang JW, Wu GY et al (2007) Dietary supplementation with polysaccharides from Semen cassiae enhances immunoglobulin production and interleukin gene expression in early-weaned piglets. J Sci Food Agric 87:1868–1873

    Article  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2008) Impaired translation-initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem. doi:10.1016/j.jnutbio.2008.05.014

  • Edmonds MS, Baker DH (1987) Amino acid excesses for young pigs: effects of excess methionine, tryptophan, threonine or leucine. J Anim Sci 64:1664–1671

    PubMed  CAS  Google Scholar 

  • El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    Article  PubMed  CAS  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids. doi:10.1007/s00726-009-0234-y

  • El-Kadi SW, Balwin RL, Sunny NE et al (2006) Intestinal protein supply alters amino acid, but not glucose, metabolism by the sheep gastrointestinal tract. J Nutr 136:1261–1269

    PubMed  CAS  Google Scholar 

  • Escobar J, Frank JW, Suryawan A et al (2005) Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am J Physiol Endocrinol Metab 288:E914–E921

    Article  PubMed  CAS  Google Scholar 

  • Escobar J, Frank JW, Suryawan A et al (2006) Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 290:E612–E621

    Article  PubMed  CAS  Google Scholar 

  • Fang ZF, Luo J, Qi ZL et al (2009) Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino Acids 36:501–509

    Article  PubMed  CAS  Google Scholar 

  • Field CJ, Johnson IR, Schley PD (2002) Nutrients and their role in host resistance to infection. J Leukoc Biol 71:16–32

    PubMed  CAS  Google Scholar 

  • Firkins JL, Hristov AN, Hall MB et al (2006) Integration of ruminal metabolism in dairy cattle. J Dairy Sci 89(Suppl 1):E31–E51

    Article  PubMed  Google Scholar 

  • Flynn NE, Knabe DA, Mallick BK, Wu G (2000) Postnatal changes of plasma amino acids in suckling pigs. J Anim Sci 78:2369–2375

    PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi:10.1007/s00726-008-0206-7

  • Frank JW, Escobar J, Hguyen HV et al (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 137:315–319

    PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Fuller MF, Redes PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18:385–411

    Article  PubMed  CAS  Google Scholar 

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009a) Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009b) Select nutrients in the ovine uterine lumen: II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol Reprod 80:94–104

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009c) Select nutrients in the ovine uterine lumen: III. Expression of cationic amino acid transporters in ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009d) Select nutrients in the ovine uterine lumen: IV. Expression of neutral and acidic amino acid transporters in ovine uteri and peri-implantation conceptuses. Biol Reprod. doi:10.1095/biolreprod.108.075440

    Google Scholar 

  • Gao HJ, Wu G, Spencer TE et al (2009e) Select nutrients in the ovine uterine lumen: V. Nitric oxide synthase, GTP cyclohydrolase and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod. doi:10.1095/biolreprod.108.075473

    Google Scholar 

  • Grillo MA, Colombatto S (2007) S-Adenosylmethionine and radical-based catalysis. Amino Acids 32:197–202

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2006) The effects of sulfur amino acids intake on immune function in humans. J Nutr 136:1660S–1665S

    PubMed  CAS  Google Scholar 

  • Ha EM, Choi CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li X et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids. doi:10.1007/s00726-009-0243-x

  • He QH, Kong XF, Wu G et al (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9

  • Hill JO, Peters JC, Catenacci VA, Wyatt HR (2008) International strategies to address obesity. Obes Rev 9(Suppl 1):41–47

    Article  PubMed  Google Scholar 

  • Hu CA, Williams DB, Zhaorigetu S et al (2008a) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S et al (2008b) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Huang YF, Wang YX, Watford M (2007) Glutamine directly downregulates glutamine synthetase protein levels in mouse C2C12 skeletal muscle myotubes. J Nutr 137:1357–1362

    PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC et al (2009a) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009b) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids. doi:10.1007/s00726-009-0246-7

  • John JPP, Oh JE, Pollak A, Lubec G (2008) Identification and characterization of arsenite (+3 oxidation state) methyltransferase (AS3MT) in mouse neuroblastoma cell line N1E-115. Amino Acids 35:355–358

    Article  PubMed  CAS  Google Scholar 

  • Katane M, Hanai T, Furuchi T et al (2008) Hyperactive mutants of mouse d-aspartate oxidase: mutagenesis of the active site residue serine. Amino Acids 35:75–82

    Article  PubMed  CAS  Google Scholar 

  • Kilberg MS, Pan YX, Chen H, Leung-Pineda V (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25:59–85

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi:10.1007/s00726-008-0151-5

  • Kohli R, Meininger CJ, Haynes TE et al (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    PubMed  CAS  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2008) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids. doi:10.1007/s00726-008-0176-9

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Bazer FW, Spencer TE (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Wu G, Meininger CJ et al (2004) Developmental changes in nitric oxide synthesis in the ovine conceptus. Biol Reprod 70:679–686

    Article  PubMed  CAS  Google Scholar 

  • Leong HX, Simkevich C, Lesieur-Brooks A et al (2006) Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatics analysis. Nutr Metab 3:37

    Article  CAS  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mai KS, Trushenski J, Wu G (2008) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids. doi:10.1007/s00726-008-0171-1

  • Li X, Bazer FW, Gao H et al (2009) Amino acids and gaseous signaling. Amino Acids. doi:10.1007/s00726-009-0264-5

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  PubMed  CAS  Google Scholar 

  • Lucotti P, Setola E, Monti LD et al (2006) Beneficial effect of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912

    Article  PubMed  CAS  Google Scholar 

  • Lupi A, Tenni R, Rossi A et al (2008) Human prolidase and prolidase deficiency. Amino Acids 35:739–752

    Article  PubMed  CAS  Google Scholar 

  • Lynch CJ, Hutson SM, Patson BJ et al (2002) Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 283:E824–E835

    PubMed  CAS  Google Scholar 

  • Macchiarulo A, Camaioni E, Nuti R, Pellicciari RC (2008) Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids. doi:10.1007/s00726-008-0137-3

  • Maclennan PA, Brown RA, Rennie MJ (1987) A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett 215:187–191

    Article  PubMed  CAS  Google Scholar 

  • Maclennan PA, Smith K, Weryk B et al (1988) Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett 237:133–136

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36:417–428

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526

    Article  PubMed  CAS  Google Scholar 

  • Manso Filho HC, Costa HE, Wu G et al (2009) Equine placenta expresses glutamine synthetase. Vet Res Commun 33:175–182

    Article  PubMed  Google Scholar 

  • Marliss EB, Chevalier S, Gougeon R et al (2006) Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 49:351–359

    Article  PubMed  CAS  Google Scholar 

  • Martin PM, Sutherland AE, Van Winkle LJ (2003) Amino acid transport regulates blastocyst implantation. Biol Reprod 69:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Moon HK et al (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ (2003) Amino acids as regulators and components of nonproteinogenic pathways. J Nutr 133:2057S–2062S

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Dubbelhuis PF (2004) Amino acid signaling and the integration of metabolism. Biochem Biophys Res Commun 313:397–403

    Article  PubMed  CAS  Google Scholar 

  • Melchior D, Le Floc’h N, Seve B (2003) Effect of chronic lung inflammation on tryptophan metabolism in piglets. Adv Exp Med Biol 527:359–362

    PubMed  CAS  Google Scholar 

  • Montanez R, Rodriguez-Caso C, Sanchez-Jimenez F, Medina MA (2008) In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 34:223–229

    Article  PubMed  CAS  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609S

    PubMed  CAS  Google Scholar 

  • Nakashima K, Yakabe Y, Ishida A et al (2007) Suppression of myofibrillar proteolysis in chick skeletal muscles by α-ketoisocaproate. Amino Acids 33:499–503

    Article  PubMed  CAS  Google Scholar 

  • Newsholme P, Brennnan L, Rubi B, Maechler P (2005) New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci 108:185–194

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Tasker RAR (2008) Excitatory amino acids in epilepsy: from the clinics to the laboratory. Amino Acids 32:295–297

    Article  CAS  Google Scholar 

  • Orlando GF, Wolf G, Engelmann M (2008) Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35:17–27

    Article  PubMed  CAS  Google Scholar 

  • Ou DY, Li DF, Cao YH et al (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18:820–826

    Article  PubMed  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2008) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids. doi:10.1007/s00726-008-0199-2

  • Perta-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  CAS  Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu Y (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Platten M, Ho PP, Youssef S et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    Article  PubMed  CAS  Google Scholar 

  • Ptolemy AS, Lee R, Britz-McKibbin P (2007) Strategies for comprehensive analysis of amino acid biomarkers of oxidative stress. Amino Acids 33:3–18

    Article  PubMed  CAS  Google Scholar 

  • Rees WD, Wilson FA, Maloney CA (2006) Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr 136:1701S–1705S

    PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2008) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. doi:10.1007/s00726-008-0225-4

  • Rhoads JM, Argenzio RA, Chen WN et al (1997) l-Glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol Gastrointest Liver Physiol 272:G943–G953

    CAS  Google Scholar 

  • Rhoads JM, Niu X, Odle J, Graves LM (2006) Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 291:G510–G517

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Niu XM, Surendran S et al (2008) Arginine stimulates intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6k signaling. J Nutr 138:1652–1657

    PubMed  CAS  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA et al (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  PubMed  CAS  Google Scholar 

  • Riedijk MA, Stoll B, Chacko S et al (2007) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci USA 104:3408–3413

    Article  PubMed  CAS  Google Scholar 

  • Sahai A, Pan XM, Paul R et al (2006) Roles of phosphatidylinositol 3-kinase and osteopontin in steatosis and aminotransferase release by hepatocytes treated with methionine-choline-deficient medium. Am J Physiol Gastrointest Liver Physiol 291:G55–G62

    Article  PubMed  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov D, Guertin D, Ali S, Sabatini D (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Scolari MJ, Acosta GB (2007) d-Serine: a new world in the glutaamatergic neuro-glial language. Amino Acids 33:563–574

    Article  PubMed  CAS  Google Scholar 

  • Self JT, Spencer TE, Johnson GA et al (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    Article  PubMed  CAS  Google Scholar 

  • She P, Reid TM, Bronson SK et al (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6:181–194

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE et al (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Kawachi H, Choi CB et al (2008) Cellular regulation of bovine intramuscular adipose tissue development and composition. J Anim Sci. doi:10.2527/jas.2008-1340

    Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE et al (2008) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. doi:10.1007/s00726-008-0202-y

  • Stoll B, Henry J, Reeds PJ et al (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    PubMed  CAS  Google Scholar 

  • Suenaga R, Tomonaga S, Yamane H et al (2008) Intracerebroventricular injection of l-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids 35:139–146

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Takao K, Toyama Y, Shirahata A (2007) Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 33:253–260

    Article  PubMed  CAS  Google Scholar 

  • Sun YP, Nonobe E, Kobayashi Y et al (2002) Characterization and expression of l-amino acid oxidase of mouse milk. J Biol Chem 277:19080–19086

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2008a) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z

  • Suryawan A, Jeyapalan AS, Orellana RA et al (2008b) Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTOR1 activation. Am J Physiol Endocrinol Metab 295:E868–E875

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2008a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids. doi:10.1007/s00726-008-0155-1

  • Tan BE, Yin YL, Liu ZQ et al (2008b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0

  • Tischler ME, Desautels M, Goldberg AL (1982) Does leucine, leucyl-transfer RNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 257:1613–1621

    PubMed  CAS  Google Scholar 

  • Tujioka K, Okuyama S, Yokogoshi H et al (2007) Dietary γ-aminobutyric acid affects the brain protein synthesis rate in young rats. Amino Acids 32:255–260

    Article  PubMed  CAS  Google Scholar 

  • Van Brummelen R, du Toit D (2007) l-Methionine as immune supportive supplement: a clinical evaluation. Amino Acids 33:157–163

    Article  PubMed  CAS  Google Scholar 

  • Van Goudoever JB, Stoll B, Henry JF et al (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625

    Article  PubMed  Google Scholar 

  • Wang X, Qiao SY, Yin YL et al (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008a) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2008b) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4

  • Wang JJ, Wu G, Zhou HJ, Wang FL (2008c) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8

  • Wang X, Ou D, Yin J et al (2009) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids. doi:10.1007/s00726-009-0242-y

  • Watford M, Wu G (2005) Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physiol B 140:607–614

    Article  PubMed  CAS  Google Scholar 

  • Willis A, Beander HU, Steel G, Valle D (2008) PRODH variants and risk for schizophrenia. Amino Acids 35:673–679

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrums and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. Biofactors 35:21–27

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1990) The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J 265:593–598

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W (1995) Developmental changes of free amino acid concentrations in fetal fluids of pigs. J Nutr 125:2859–2868

    PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996a) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Tuo W et al (1996b) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996c) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004a) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S et al (2004b) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004c) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Hu J et al (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007c) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi:10.1007/s00726-008-0210-y

  • Xia Y, Wen HY, Young ME et al (2003) Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine. J Biol Chem 278:13143–13150

    Article  PubMed  CAS  Google Scholar 

  • Yan GR, He QY (2008) Functional proteomics to identify critical proteins in signal transduction pathways. Amino Acids 35:267–274

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from National Institutes of Health (1R21 HD049449), National Research Initiative Competitive Grants (2008-35206-18764, 2008-35206-18762, and 2008-35203-19120) from the USDA Cooperative State Research, Education, and Extension Service, American Heart Association (#0755024Y), and Texas AgriLife Research (H-8200). The author thanks graduate students, postdoctoral fellows, technicians, and colleagues for their important contributions to the work described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17 (2009). https://doi.org/10.1007/s00726-009-0269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0269-0

Keywords

Navigation