Skip to main content

Advertisement

Log in

Critical illness-induced dysglycemia and the brain

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Dysglycemia is a characteristic feature of critical illness associated with adverse outcome. Whether dysglycemia contributes to brain dysfunction during critical illness and long-term neurological complications is unclear. We give an overview of glucose metabolism in the brain and review the literature on critical illness-induced dysglycemia and the brain.

Methods

Medline database search using relevant search terms on dysglycemia, critical illness, acute brain injury/dysfunction, and randomized controlled trial.

Results

Hyperglycemia has been associated with deleterious effects on the nervous system. Underlying mechanisms in critical illness remain largely speculative and are often extrapolated from knowledge in diabetes mellitus. Increased hyperglycemia-induced blood–brain barrier permeability, oxidative stress, and microglia activation may play a role and compromise neuronal and glial cell integrity. Hypoglycemia is feared as critically ill patients cannot recognize or communicate hypoglycemic symptoms, which furthermore are masked by sedation and analgesia. However, observational data on the impact of brief hypoglycemia on the brain in critical illness are controversial. Secondary analysis of two large randomized studies suggested neuroprotection by strict glycemic control with insulin during intensive care, with lowered intracranial pressure, reduction of seizures, and better long-term rehabilitation in patients with isolated brain injury, and reduced incidence of critical illness polyneuromyopathy in the general critically ill patient population. Several subsequent studies failed to reproduce neurological benefit, likely explained by methodological issues, which include divergent achieved glucose levels and inaccurate glucose monitoring tools.

Conclusions

Preventing hyperglycemia during critical illness holds promise as a neuroprotective strategy to preserve brain cell viability and prevent acute brain dysfunction and long-term cognitive impairment in survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Van den Berghe G (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114:1187–1195

    Article  PubMed Central  PubMed  Google Scholar 

  2. Meyfroidt G, Keenan DM, Wang X, Wouters PJ, Veldhuis JD, Van den Berghe G (2010) Dynamic characteristics of blood glucose time series during the course of critical illness: effects of intensive insulin therapy and relative association with mortality. Crit Care Med 38:1021–1029

    Article  CAS  PubMed  Google Scholar 

  3. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, Inouye SK, Bernard GR, Dittus RS (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762

    Article  CAS  PubMed  Google Scholar 

  4. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, Gordon SM, Canonico AE, Dittus RS, Bernard GR, Ely EW (2010) Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 38:1513–1520

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Article  CAS  PubMed  Google Scholar 

  6. Auer RN (2004) Hypoglycemic brain damage. Metab Brain Dis 19:169–175

    Article  PubMed  Google Scholar 

  7. Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis–Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21:653–663

    Article  CAS  PubMed  Google Scholar 

  8. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mastaitis JW, Wurmbach E, Cheng H, Sealfon SC, Mobbs CV (2005) Acute induction of gene expression in brain and liver by insulin-induced hypoglycemia. Diabetes 54:952–958

    Article  CAS  PubMed  Google Scholar 

  10. Hasselbalch SG, Knudsen GM, Capaldo B, Postiglione A, Paulson OB (2001) Blood-brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans. J Clin Endocrinol Metab 86:1986–1990

    CAS  PubMed  Google Scholar 

  11. Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8:43–53

    CAS  PubMed  Google Scholar 

  12. Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM Jr, Harik SI (1992) Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab 12:887–899

    Article  CAS  PubMed  Google Scholar 

  13. Payne J, Maher F, Simpson I, Mattice L, Davies P (1997) Glucose transporter Glut 5 expression in microglial cells. Glia 21:327–331

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt S, Gawlik V, Holter SM, Augustin R, Scheepers A, Behrens M, Wurst W, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Kluge R, Joost HG, Schurmann A (2008) Deletion of glucose transporter GLUT8 in mice increases locomotor activity. Behav Genet 38:396–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Barros LF, Bittner CX, Loaiza A, Porras OH (2007) A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55:1222–1237

    Article  CAS  PubMed  Google Scholar 

  16. Seaquist ER, Damberg GS, Tkac I, Gruetter R (2001) The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 50:2203–2209

    Article  CAS  PubMed  Google Scholar 

  17. Benarroch EE (2010) Glycogen metabolism: metabolic coupling between astrocytes and neurons. Neurology 74:919–923

    Article  CAS  PubMed  Google Scholar 

  18. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, Bloch J, Messerer M, Levivier M, Meuli R, Magistretti PJ, Oddo M (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40:412–421

    Article  CAS  PubMed  Google Scholar 

  21. Kodl CT, Franc DT, Rao JP, Anderson FS, Thomas W, Mueller BA, Lim KO, Seaquist ER (2008) Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes 57:3083–3089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. van Elderen SG, de Roos A, de Craen AJ, Westendorp RG, Blauw GJ, Jukema JW, Bollen EL, Middelkoop HA, van Buchem MA, van der Grond J (2010) Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology 75:997–1002

    Article  PubMed  Google Scholar 

  23. Coleman ES, Dennis JC, Braden TD, Judd RL, Posner P (2010) Insulin treatment prevents diabetes-induced alterations in astrocyte glutamate uptake and GFAP content in rats at 4 and 8 weeks of diabetes duration. Brain Res 1306:131–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ntaios G, Egli M, Faouzi M, Michel P (2010) J-shaped association between serum glucose and functional outcome in acute ischemic stroke. Stroke 41:2366–2370

    Article  CAS  PubMed  Google Scholar 

  25. Kruyt ND, Biessels GJ, Devries JH, Roos YB (2010) Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nat Rev Neurol 6:145–155

    Article  CAS  PubMed  Google Scholar 

  26. Muranyi M, Ding C, He Q, Lin Y, Li PA (2006) Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes 55:349–355

    Article  CAS  PubMed  Google Scholar 

  27. Polito A, Brouland JP, Porcher R, Sonneville R, Siami S, Stevens RD, Guidoux C, Maxime V, de la Grandmaison GL, Chretien FC, Gray F, Annane D, Sharshar T (2011) Hyperglycaemia and apoptosis of microglial cells in human septic shock. Crit Care 15:R131

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hopkins RO, Suchyta MR, Snow GL, Jephson A, Weaver LK, Orme JF (2010) Blood glucose dysregulation and cognitive outcome in ARDS survivors. Brain Inj 24:1478–1484

    Article  PubMed  Google Scholar 

  29. Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ (2008) TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int 52:447–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sonneville R, den Hertog HM, Guiza F, Gunst J, Derese I, Wouters PJ, Brouland JP, Polito A, Gray F, Chretien F, Charlier P, Annane D, Sharshar T, Van den Berghe G, Vanhorebeek I (2012) Impact of hyperglycemia on neuropathological alterations during critical illness. J Clin Endocrinol Metab 97:2113–2123

    Article  CAS  PubMed  Google Scholar 

  32. Cryer PE (2007) Hypoglycemia, functional brain failure, and brain death. J Clin Invest 117:868–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ben-Ami H, Nagachandran P, Mendelson A, Edoute Y (1999) Drug-induced hypoglycemic coma in 102 diabetic patients. Arch Intern Med 159:281–284

    Article  CAS  PubMed  Google Scholar 

  34. Auer RN, Olsson Y, Siesjo BK (1984) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098

    Article  CAS  PubMed  Google Scholar 

  35. Sakel M (1937) The methodical use of hypoglycemia in the treatment of psychoses. Am J Psychiatry 151:240–247

    Google Scholar 

  36. Suh SW, Hamby AM, Swanson RA (2007) Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia 55:1280–1286

    Article  PubMed  Google Scholar 

  37. Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sakaguchi S, Ishii Y (1997) Specific changes in human brain after hypoglycemic injury. Stroke 28:584–587

    Article  CAS  PubMed  Google Scholar 

  38. Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    Article  CAS  PubMed  Google Scholar 

  39. Shin BS, Won SJ, Yoo BH, Kauppinen TM, Suh SW (2010) Prevention of hypoglycemia-induced neuronal death by hypothermia. J Cereb Blood Flow Metab 30:390–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Van den Berghe G, Wilmer A, Milants I, Wouters PJ, Bouckaert B, Bruyninckx F, Bouillon R, Schetz M (2006) Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes 55:3151–3159

    Article  PubMed  Google Scholar 

  41. Krinsley JS, Grover A (2007) Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med 35:2262–2267

    Article  PubMed  Google Scholar 

  42. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, Hegarty C, Bailey M (2010) Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc 85:217–224

    Article  PubMed Central  PubMed  Google Scholar 

  43. Krinsley JS, Schultz MJ, Spronk PE, Harmsen RE, van Braam Houckgeest F, van der Sluijs JP, Melot C, Preiser JC (2011) Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care 15:R173

    Article  PubMed Central  PubMed  Google Scholar 

  44. Duning T, van den Heuvel I, Dickmann A, Volkert T, Wempe C, Reinholz J, Lohmann H, Freise H, Ellger B (2010) Hypoglycemia aggravates critical illness-induced neurocognitive dysfunction. Diabetes Care 33:639–644

    Article  PubMed Central  PubMed  Google Scholar 

  45. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238

    Article  CAS  PubMed  Google Scholar 

  46. Piot VM, Verrijcken A, Vanhoof M, Mertens I, Soetens F (2012) Full neurological recovery after extreme hypoglycemia during intensive insulin therapy: a case report. J Diabetes Sci Technol 6:973–977

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sinha S, Jayaram R, Hargreaves CG (2007) Fatal neuroglycopaenia after accidental use of a glucose 5 % solution in a peripheral arterial cannula flush system. Anaesthesia 62:615–620

    Article  CAS  PubMed  Google Scholar 

  48. Egi M, Bellomo R, Stachowski E, French CJ, Hart G (2006) Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105:244–252

    Article  CAS  PubMed  Google Scholar 

  49. Ali NA, O’Brien JM Jr, Dungan K, Phillips G, Marsh CB, Lemeshow S, Connors AF Jr, Preiser JC (2008) Glucose variability and mortality in patients with sepsis. Crit Care Med 36:2316–2321

    Article  PubMed Central  PubMed  Google Scholar 

  50. Jacka MJ, Torok-Both CJ, Bagshaw SM (2009) Blood glucose control among critically ill patients with brain injury. Can J Neurol Sci 36:436–442

    Article  PubMed  Google Scholar 

  51. Kurtz P, Claassen J, Helbok R, Schmidt J, Fernandez L, Presciutti M, Stuart RM, Connolly ES, Lee K, Badjatia N, Mayer SA (2014) Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study. Crit Care 18:R89

    Article  PubMed Central  PubMed  Google Scholar 

  52. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  53. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    Article  PubMed  Google Scholar 

  54. Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, van den Heuvel I, Mesotten D, Casaer MP, Meyfroidt G, Ingels C, Muller J, Van Cromphaut S, Schetz M, Van den Berghe G (2009) Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet 373:547–556

    Article  CAS  PubMed  Google Scholar 

  55. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64:1348–1353

    Article  PubMed  Google Scholar 

  56. Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, Bruyninckx F, Van den Berghe G (2007) Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med 175:480–489

    Article  CAS  PubMed  Google Scholar 

  57. Azevedo JR, Lima ER, Cossetti RJ, Azevedo RP (2007) Intensive insulin therapy versus conventional glycemic control in patients with acute neurological injury: a prospective controlled trial. Arq Neuropsiquiatr 65:733–738

    Article  PubMed  Google Scholar 

  58. Bilotta F, Spinelli A, Giovannini F, Doronzio A, Delfini R, Rosa G (2007) The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol 19:156–160

    Article  PubMed  Google Scholar 

  59. Bilotta F, Caramia R, Cernak I, Paoloni FP, Doronzio A, Cuzzone V, Santoro A, Rosa G (2008) Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care 9:159–166

    Article  CAS  PubMed  Google Scholar 

  60. Bilotta F, Caramia R, Paoloni FP, Delfini R, Rosa G (2009) Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology 110:611–619

    Article  CAS  PubMed  Google Scholar 

  61. Yang M, Guo Q, Zhang X, Sun S, Wang Y, Zhao L, Hu E, Li C (2009) Intensive insulin therapy on infection rate, days in NICU, in-hospital mortality and neurological outcome in severe traumatic brain injury patients: a randomized controlled trial. Int J Nurs Stud 46:753–758

    Article  PubMed  Google Scholar 

  62. Green DM, O’Phelan KH, Bassin SL, Chang CW, Stern TS, Asai SM (2010) Intensive versus conventional insulin therapy in critically ill neurologic patients. Neurocrit Care 13:299–306

    Article  CAS  PubMed  Google Scholar 

  63. Coester A, Neumann CR, Schmidt MI (2010) Intensive insulin therapy in severe traumatic brain injury: a randomized trial. J Trauma 68:904–911

    CAS  PubMed  Google Scholar 

  64. Gray CS, Hildreth AJ, Sandercock PA, O’Connell JE, Johnston DE, Cartlidge NE, Bamford JM, James OF, Alberti KG (2007) Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet Neurol 6:397–406

    Article  CAS  PubMed  Google Scholar 

  65. Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR, GRASP Investigators (2009) Glucose Regulation in Acute Stroke Patients (GRASP) trial: a randomized pilot trial. Stroke 40:3804–3809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Rosso C, Corvol JC, Pires C, Crozier S, Attal Y, Jacqueminet S, Deltour S, Multlu G, Leger A, Meresse I, Payan C, Dormont D, Samson Y (2012) Intensive versus subcutaneous insulin in patients with hyperacute stroke: results from the randomized INSULINFARCT trial. Stroke 43:2343–2349

    Article  PubMed  Google Scholar 

  67. Bellolio MF, Gilmore RM, Ganti L (2014) Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev 1:CD005346

    PubMed  Google Scholar 

  68. Ooi YC, Dagi TF, Maltenfort M, Rincon F, Vibbert M, Jabbour P, Gonzalez LF, Rosenwasser R, Jallo J (2012) Tight glycemic control reduces infection and improves neurological outcome in critically ill neurosurgical and neurological patients. Neurosurgery 71:692–702

    Article  PubMed  Google Scholar 

  69. Kramer AH, Roberts DJ, Zygun DA (2012) Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care 16:R203

    Article  PubMed Central  PubMed  Google Scholar 

  70. Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, Mesotten D (2009) Intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab 94:3163–3170

    Article  PubMed  Google Scholar 

  71. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297

    Article  PubMed  Google Scholar 

  72. NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hebert PC, Heyland DK, Robinson BG (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118

    Article  PubMed  Google Scholar 

  73. Vanhorebeek I, Gielen M, Boussemaere M, Wouters PJ, Grandas FG, Mesotten D, Van den Berghe G (2010) Glucose dysregulation and neurological injury biomarkers in critically ill children. J Clin Endocrinol Metab 95:4669–4679

    Article  CAS  PubMed  Google Scholar 

  74. Mesotten D, Gielen M, Sterken C, Claessens K, Hermans G, Vlasselaers D, Lemiere J, Lagae L, Gewillig M, Eyskens B, Vanhorebeek I, Wouters PJ, Van den Berghe G (2012) Neurocognitive development of children 4 years after critical illness and treatment with tight glucose control: a randomized controlled trial. JAMA 308:1641–1650

    Article  CAS  PubMed  Google Scholar 

  75. Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Foundation for Scientific Research (FWO), Flanders, Belgium (G.0585.09), la Fondation pour la Recherche Médicale (FRM), Journées Neurologiques de Langue Française (JNLF). GVdB, through the University of Leuven, receives long-term structural research financing via the Methusalem program, funded by the Flemish government (METH/08/07) and holds a European Research Council Advanced Grant (AdvG-2012-321670) from the Ideas Programme of the EU FP7.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greet Van den Berghe.

Additional information

Take home message: Persistent hyperglycemia is associated with significant neuronal and glial changes during critical illness. Preventing hyperglycemia with insulin infusion during critical illness holds promise as a neuroprotective strategy to prevent acute brain dysfunction as well as long-term cognitive impairment in survivors of critical illness. When occurring, hypoglycemia should be corrected promptly, avoiding overcorrection with excessive glucose reperfusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonneville, R., Vanhorebeek, I., den Hertog, H.M. et al. Critical illness-induced dysglycemia and the brain. Intensive Care Med 41, 192–202 (2015). https://doi.org/10.1007/s00134-014-3577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3577-0

Keywords

Navigation