Skip to main content

Intermittent Fasting Effects on the Central Nervous System: How Hunger Modulates Brain Function

  • Living reference work entry
  • First Online:

Abstract

Fasting has been present throughout human history and is a regular practice in many cultures and religions. Currently, findings regarding beneficial effects of fasting on body mass control and health have largely stimulated the practice. The number of studies investigating intermittent fasting effects on different pathological states has grown steadily. Evidence suggests that this dietary intervention can delay or even prevent the onset of pathologies, such as neurodegenerative diseases. Indeed, several studies have reported intermittent fasting actions on brain integrity and function. However, fasting may also affect hunger control in less desirable manners. Indeed, the brain is highly sensitive to fasting practice due to its pronounced energy demand and its central role in the control of whole body energy balance. In this chapter, the effects of intermittent fasting on brain function are discussed along with a description of the history of human fasting practices.

This is a preview of subscription content, log in via an institution.

Abbreviations

AD:

Alzheimer’s disease

AGRP:

Agouti-related peptide

CART:

Cocaine- and amphetamine-regulated transcript

GnRH:

Gonadotropin-release hormone

HDL:

High-density lipoprotein

IF:

Intermittent fasting

LDL:

Low-density lipoprotein

NPY:

Neuropeptide Y

PD:

Parkinson’s disease

POMC:

Pro-opiomelanocortin

VLDL:

Very-low-density lipoprotein

References

  • Adlouni A, Ghalim N, Benslimane A et al (1997) Fasting during Ramadan induces a marked increase in high-density lipoprotein cholesterol and decrease in low-density lipoprotein cholesterol. Ann Nutr Metab 41:242–249

    Article  CAS  PubMed  Google Scholar 

  • Amigo I, Kowaltowski AJ (2014) Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderton BH (2002) Ageing of the brain. Mech Ageing Dev 123:811–817

    Article  CAS  PubMed  Google Scholar 

  • Anson RM, Guo Z, de Cabo R et al (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci 100:6216–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armentero MT, Levandis G, Bramanti P et al (2008) Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson’s disease. Exp Neurol 212:548–551

    Article  CAS  PubMed  Google Scholar 

  • Arumugam V, Phillips TM, Cheng A et al (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhotmah BA (2011) The puzzle of self-reported weight gain in a month of fasting (Ramadan) among a cohort of Saudi families in Jeddah, western Saudi Arabia. Nutr J 10:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnosky AR, Hoddy KK, Unterman TG, Varady KA (2014) Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res 164:302–311

    Article  PubMed  Google Scholar 

  • Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600

    CAS  PubMed  Google Scholar 

  • Bragg P, Bragg PC (2004) The miracle of fasting: proven throughout history for physical, mental & spiritual rejuvenation, 1st edn. Bragg Health Sciences, Santa Barbara

    Google Scholar 

  • Carlson AJ, Hoelzel F (1946) Apparent prolongation of the life span of rats by intermittent fasting. J Nutr 31:363–375

    CAS  PubMed  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerqueira FM, Kowaltowski AJ (2010) Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 9:424–430

    Article  PubMed  Google Scholar 

  • Cerqueira FM, Da Cunha FM, Caldeira da Silva CC et al (2011) Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med 51:1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chausse B, Solon C, Caldeira da Silva CC et al (2014) Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating. Endocrinology 155:2456–2466

    Article  PubMed  Google Scholar 

  • Chausse B, Vieira-Lara MA, Sanchez AB et al (2015) Intermittent fasting results in tissue-specific changes in bioenergetics and redox state. PLoS One 10:e0120413

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherif A, Roelands B, Meeusen R et al (2016) Effects of intermittent fasting, caloric restriction, and Ramadan intermittent fasting on cognitive performance at rest and during exercise in adults. Sports Med 46:35–47

    Article  PubMed  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, CALERIE Pennington Team (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, Cheng CW, Brandhorst S, Cohen P, Wei M, Longo V, Quinn DI (2016) Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorighello GG, Rovani JC, Luhman CJF et al (2013) Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br J Nutr 111:979–986

    Article  PubMed  Google Scholar 

  • Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:195–206

    Article  CAS  PubMed  Google Scholar 

  • Estour B, Germain N, Diconne E et al (2010) Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J Clin Endocrinol Metab 95:2203–2210

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO (2008) Long-term effects of calorie or protein. Aging Cell 7:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin JS, Schiele BC, Brozek J et al (1948) Observations on human behavior in experimental starvation and rehabilitation. J Clin Psychol 4:28–45

    Article  CAS  PubMed  Google Scholar 

  • Fredricks R (2013) Fasting: an exceptional human experience. All Things Well Publications, San Jose, 533 p

    Google Scholar 

  • French SA, Jeffery RW (1994) Consequences of dieting to lose weight: effects on physical and mental health. Health Psychol 13:195–212

    Article  CAS  PubMed  Google Scholar 

  • Goscienski PJ (2005) Health secrets of the stone age. Better Life, Concord

    Google Scholar 

  • Gotthardt JD, Verpeut JL, Yeomans BL et al (2016) Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 157:679–691

    Article  CAS  PubMed  Google Scholar 

  • Green MW, Rogers PJ, Elliman NA et al (1994) Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol Behav 55:447–452

    Article  CAS  PubMed  Google Scholar 

  • Griffioen KJ, Rothman SM, Ladenheim B et al (2013) Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiol Aging 34:928–935

    Article  CAS  PubMed  Google Scholar 

  • Halagappa VKM, Guo Z, Pearson M et al (2007) Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 26:212–220

    Article  CAS  PubMed  Google Scholar 

  • Harvie M, Wright C, Pegington M et al (2013) The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr 110:1534–1547

    Article  CAS  PubMed  Google Scholar 

  • Heilbronn LK, Smith SR, Martin CK et al (2005) Alternate-day fasting in non-obese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr 81:69–73

    CAS  PubMed  Google Scholar 

  • Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832

    Article  CAS  PubMed  Google Scholar 

  • Holmer HK, Keyghobadi M, Moore C et al (2005) Dietary restriction affects striatal glutamate in the MPTP-induced mouse model of nigrostriatal degeneration. Synapse 57:100–112

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingram DK, Zhu M, Mamczarz J et al (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  • Johnstone AM (2007) Fasting – the ultimate diet? Obes Rev 8:211–222

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kaur G (2013) Intermittent fasting dietary restriction regimen negatively influences reproduction in young rats: a study of hypothalamo-hypophysial-gonadal axis. PLoS One 8:1–15

    Article  Google Scholar 

  • Lauzurica N, García-García L, Pinto S et al (2010) Changes in NPY and POMC, but not serotonin transporter, following a restricted feeding/repletion protocol in rats. Brain Res 1313:103–112

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Longo VD (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Duan W, Long JM et al (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Miranda J, Marin C (2010) Dietary, physiological, and genetic impacts on postprandial lipid metabolism. In: Montmayeur JP, le Coutre J (eds) Fat detection: taste, texture, and post ingestive effects. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Maislos M, Khamaysi N, Assali A et al (1993) Marked increase in plasma high-density-lipoprotein cholesterol after prolonged fasting during Ramadan. Am J Clin Nutr 57:640–642

    CAS  PubMed  Google Scholar 

  • Marosi K, Mattson MP (2014) BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 25:89–98

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Pearson M, Kebejian L et al (2007) Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology 148:4318–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2015) Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev 20:37–45

    Article  PubMed  Google Scholar 

  • Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev S1568–1637(16)30251–3

    Google Scholar 

  • McCay CM (1935) The effect of retarded growth upon the length of life and upon ultimate size. J Nutr 10:63–79

    CAS  Google Scholar 

  • Méquinion M, Le Thuc O, Zgheib S et al (2017) Long-term energy deficit in mice causes long-lasting hypothalamic alterations after recovery. Neuroendocrinology. (in press)

    Google Scholar 

  • Morgulis S (1913) The influence of protracted and intermittent fasting upon growth. Am Nat 47:477–487

    Article  Google Scholar 

  • Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy T, Dias GP, Thuret S (2014) Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014:32

    Article  Google Scholar 

  • National Center for Health Statistics (2016) Health, United States, 2015: with special feature on racial and ethnic health disparities. National Center for Health Statistics, Hyattsville

    Google Scholar 

  • Pedersen W, Mattson MP (1999) No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res 833:117–120

    Article  CAS  PubMed  Google Scholar 

  • Qiu G, Spangler EL, Wan R et al (2012) Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids. Neurobiol Aging 33:2398–2410

    Article  CAS  PubMed  Google Scholar 

  • Raefsky SM, Mattson MP (2016) Adaptive responses of neuronal mitochondria to bioenergetic challenges: roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203–216

    Article  PubMed  Google Scholar 

  • Seimon RV, Shi YC, Slack K et al (2016) Intermittent moderate energy restriction improves weight loss efficiency in diet-induced obese mice. PLoS One 11:e0145157

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellayah D, Cagampang FR, Cox RD (2014) On the evolutionary origins of obesity: a new hypothesis. Endocrinology 155:1573–1588

    Article  PubMed  Google Scholar 

  • Singh R, Lakhanpal D, Kumar S et al (2012) Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age 34:917–933

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stice E, Davis K, Miller NP et al (2008) Fasting increases the risk for onset binge eating and bulimic pathology: a 5-year prospective study. J Abnorm Psychol 117:941–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Tomoto T, Sugawara J (2016) A week of Danjiki (Buddhist fasting ritual) on cardiometabolic health: a case report. J Physiol Sci 66:431–434

    Article  PubMed  Google Scholar 

  • Temizhan A, Dönderici O, Ouz D et al (1999) Is there any effect of Ramadan fasting on acute coronary heart disease events? Int J Cardiol 70:149–153

    Article  CAS  PubMed  Google Scholar 

  • Temizhan A, Tangodan I, Dönderici O et al (2000) The effects of Ramadan fasting on blood lipid levels. Am J Med 109:341–342

    Article  CAS  PubMed  Google Scholar 

  • The NHS Information Centre (2012) Statistics on obesity, physical activity and diet – England: report. Lifestyles Statistics, London

    Google Scholar 

  • Varady KA (2011) Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev 12:e593–e601

    Article  CAS  PubMed  Google Scholar 

  • Von Seeland (1887) Ueber die Nachwirkung der Nahrungsentziehung auf die Ernährung. Biol Centralbl 7:145–271

    Google Scholar 

  • Wahl D, Cogger VC, Solon-Biet SM et al (2016) Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 31:80–92

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Wu T, Hanson JE et al (2015) Cognitive deficits, changes in synaptic function, and brain pathology in a mouse model of normal aging (1,2,3). eNeuro 2:1–26

    Article  Google Scholar 

  • Wing RR, Phelan S (2005) Long-term weight loss maintenance. Am J Clin Nutr 82:222S–225S

    CAS  PubMed  Google Scholar 

  • Wu T, Gao X, Chen M, van Dam RM (2009) Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obes Rev 10:313–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Kowaltowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Cerqueira, F.M., Chausse, B., Kowaltowski, A.J. (2017). Intermittent Fasting Effects on the Central Nervous System: How Hunger Modulates Brain Function. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics