Skip to main content

Amino Acid Regulation of Autophagosome Formation

  • Protocol
Book cover Autophagosome and Phagosome

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 445))

Summary

Amino acids are not only substrates for various metabolic pathways, but can also serve as signaling molecules controlling signal transduction pathways. One of these signaling pathways is mTOR-dependent and is activated by amino acids (leucine in particular) in synergy with insulin. Activation of this pathway inhibits autophagy. Because activation of mTOR-mediated signaling also stimulates protein synthesis, it appears that protein synthesis and autophagic protein degradation are reciprocally controlled by the same signaling pathway. Recent developments indicate that amino acid–stimulated mTOR-dependent signaling is subject to complex regulation. The mechanism by which amino acids stimulate mTORdependent signaling (and other signaling pathways), and its molecular connection with the autophagic machinery, is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reggiori, F. and Klionsky, D. J. (2005) Autophagosomes: biogenesis from scratch? Curr. Opin. Cell Biol. 17, 415–422.

    CAS  PubMed  Google Scholar 

  2. Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death. Differ. 12, 1542–1552.

    CAS  PubMed  Google Scholar 

  3. Hara, T., Nakamura, K., Matsui, M., et al. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.

    CAS  PubMed  Google Scholar 

  4. Komatsu, M., Waguri ,S., Chiba,T., et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884.

    CAS  PubMed  Google Scholar 

  5. Mortimore, G. E. and Schworer, C. M. (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270, 174–176.

    CAS  PubMed  Google Scholar 

  6. Blommaart, E. F., Luiken, J. J., and Meijer, A. J. (1997) Autophagic proteolysis: control and specificity. Histochem. J. 29, 365–385.

    CAS  PubMed  Google Scholar 

  7. Deter, R. L. and De Duve, C. (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 33, 437–449.

    CAS  PubMed  Google Scholar 

  8. van Sluijters, D. A., Dubbelhuis, P. F., Blommaart, E. F., and Meijer, A. J. (2000) Amino-acid-dependent signal transduction. Biochem. J. 351, 545–550.

    PubMed  Google Scholar 

  9. Pattingre, S., Bauvy, C., and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667–16674.

    CAS  PubMed  Google Scholar 

  10. Häussinger, D., Reinehr, R., and Schliess, F. (2006) The hepatocyte integrin system and cell volume sensing. Acta Physiol (Oxf) 187, 249–255.

    Google Scholar 

  11. Jacinto, E. and Hall, M. N. (2003) Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126.

    CAS  PubMed  Google Scholar 

  12. Proud, C. G. (2006) Regulation of protein synthesis by insulin. Biochem. Soc. Trans. 34, 213–216.

    CAS  PubMed  Google Scholar 

  13. Watson, R. T. and Pessin, J. E. (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem. Sci. 31, 215–222.

    CAS  PubMed  Google Scholar 

  14. Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37, 19–24.

    CAS  PubMed  Google Scholar 

  15. Dann, S. G. and Thomas, G. (2006) The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett. 580, 2821–2829.

    CAS  PubMed  Google Scholar 

  16. Holen, I., Gordon, P. B., and Seglen, P. O. (1993) Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur. J. Biochem. 215, 113–122.

    CAS  PubMed  Google Scholar 

  17. Luiken, J. J., Blommaart, E. F., Boon, L., van Woerkom, G. M., and Meijer, A. J. (1994) Cell swelling and the control of autophagic proteolysis in hepatocytes: involvement of phosphorylation of ribosomal protein S6? Biochem. Soc. Trans. 22, 508–511.

    CAS  PubMed  Google Scholar 

  18. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M., and Meijer, A. J. (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326.

    CAS  PubMed  Google Scholar 

  19. Shintani, T. and Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword. Science 306, 990–995.

    CAS  PubMed  Google Scholar 

  20. Noda, T. and Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966.

    CAS  PubMed  Google Scholar 

  21. Prick, T., Thumm, M., Kohrer, K., Häussinger, D., and vom Dahl, S. (2006) In yeast, loss of Hog1 leads to osmosensitivity of autophagy. Biochem. J. 394, 153–161.

    CAS  PubMed  Google Scholar 

  22. Kimball, S. R., Siegfried, B. A., and Jefferson, L. S. (2004) Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J. Biol. Chem. 279, 54103–54109.

    CAS  PubMed  Google Scholar 

  23. Mothe-Satney, I., Gautier, N., Hinault, C., Lawrence, J. C., Jr., and van Obberghen, E. (2004) In rat hepatocytes glucagon increases mammalian target of rapamycin phosphorylation on serine 2448 but antagonizes the phosphorylation of its downstream targets induced by insulin and amino acids. J. Biol. Chem. 279, 42628–42637.

    CAS  PubMed  Google Scholar 

  24. Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H., and Meijer, A. J. (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240–246.

    CAS  PubMed  Google Scholar 

  25. Tang, X., Wang, L., Proud, C. G., and Downes, C. P. (2003) Muscarinic receptor-mediated activation of p70 S6 kinase 1 (S6K1) in 1321N1 astrocytoma cells: permissive role of phosphoinositide 3-kinase. Biochem. J. 374, 137–143.

    CAS  PubMed  Google Scholar 

  26. Nobukuni, T., Joaquin, M., Roccio, M., et al. (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102, 14238–14243.

    CAS  PubMed  Google Scholar 

  27. Byfield, M. P., Murray, J. T., and Backer, J. M. (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076–33082.

    CAS  PubMed  Google Scholar 

  28. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998.

    CAS  PubMed  Google Scholar 

  29. Arico, S., Petiot, A., Bauvy, C., et al. (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246.

    CAS  PubMed  Google Scholar 

  30. Seglen, P. O. and Gordon, P. B. (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79, 1889–1892.

    CAS  PubMed  Google Scholar 

  31. Liang, X. H., Jackson, S., Seaman, M., et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676.

    CAS  PubMed  Google Scholar 

  32. Kihara, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335.

    CAS  PubMed  Google Scholar 

  33. Furuya, N., Yu, J., Byfield, M., Pattingre, S., and Levine, B. (2005) The Evolutionarily Conserved Domain of Beclin 1 is Required for Vps34 Binding, Autophagy and Tumor Suppressor Function. Autophagy 1, 46–52.

    CAS  PubMed  Google Scholar 

  34. Pattingre, S., Tassa, A., Qu, X., et al. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939.

    CAS  PubMed  Google Scholar 

  35. Tassa, A., Roux, M. P., Attaix, D., and Bechet, D. M. (2003) Class III phosphoinositide 3-kinase–Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem. J. 376, 577–586.

    CAS  PubMed  Google Scholar 

  36. Mordier, S., Deval, C., Bechet, D., Tassa, A., and Ferrara, M. (2000) Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J. Biol. Chem. 275, 29900–29906.

    CAS  PubMed  Google Scholar 

  37. Kanazawa, T., Taneike, I., Akaishi, R., et al. (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J. Biol. Chem. 279, 8452–8459.

    CAS  PubMed  Google Scholar 

  38. Schliess, F., Richter, L., vom Dahl, S., and Häussinger, D. (2006) Cell hydration and mTOR-dependent signalling. Acta Physiol (Oxf). 187, 223–229.

    CAS  Google Scholar 

  39. Hinault, C., Mothe-Satney, I., Gautier, N., Lawrence, J. C., Jr., and van Obberghen, E. (2004) Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J. 18, 1894–1896.

    CAS  PubMed  Google Scholar 

  40. Isosaki M. (2004) Inhibition of wortmannin activities by amino compounds. Biochem. Biophys. Res. Commun. 324, 1406–1412.

    CAS  PubMed  Google Scholar 

  41. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513.

    CAS  PubMed  Google Scholar 

  42. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544–2553.

    CAS  PubMed  Google Scholar 

  43. Dennis, P. B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S. C., and Thomas, G. (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105.

    CAS  PubMed  Google Scholar 

  44. Meijer, A. J. and Dubbelhuis, P. F. (2004) Amino acid signalling and the integration of metabolism. Biochem. Biophys. Res. Commun. 313, 397–403.

    CAS  PubMed  Google Scholar 

  45. Kahn, B. B., Alquier, T., Carling, D., and Hardie, D. G. (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25.

    CAS  PubMed  Google Scholar 

  46. Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A., and Guan, K. L. (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538.

    CAS  PubMed  Google Scholar 

  47. Cheng, S. W., Fryer, L. G., Carling, D., and Shepherd, P. R. (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 279, 15719–15722.

    CAS  PubMed  Google Scholar 

  48. Wang, Z., Wilson, W. A., Fujino, M. A., and Roach, P. J. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell Biol.. 21, 5742–5752.

    CAS  PubMed  Google Scholar 

  49. Samari, H. R. and Seglen, P. O. (1998) Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J. Biol. Chem. 273, 23758–23763.

    CAS  PubMed  Google Scholar 

  50. Kundu M. and Thompson C. B. (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death. Differ. 12., 1484–1489.

    PubMed  Google Scholar 

  51. Rodriguez-Enriquez S., Kim I., Currin R. T., and Lemasters J. J. (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2, 39–46.

    CAS  PubMed  Google Scholar 

  52. Tettamanti, G., Malagoli, D., Marchesini, E., Congiu, T., de E. M., and Ottaviani, E. (2006) Oligomycin A induces autophagy in the IPLB-LdFB insect cell line. Cell Tissue Res. 326, 179–186.

    CAS  PubMed  Google Scholar 

  53. Feng, Z., Zhang, H., Levine, A. J., and Jin, S. (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA 102, 8204–8209.

    CAS  PubMed  Google Scholar 

  54. Levine, A. J., Feng, Z., Mak, T. W., You, H., and Jin, S. (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev. 20, 267–275.

    CAS  PubMed  Google Scholar 

  55. Wu, H., Yang, J. M., Jin, S., Zhang, H., and Hait, W. N. (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res. 66, 3015–3023.

    CAS  PubMed  Google Scholar 

  56. Browne, G. J., Finn, S. G., and Proud, C. G. (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 279, 12220–12231.

    CAS  PubMed  Google Scholar 

  57. Meley, D., Bauvy, C., Houben-Weerts, J. H., et al. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281,34870–34879.

    CAS  PubMed  Google Scholar 

  58. Martin, P. M. and Sutherland, A. E. (2001) Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240, 182–193.

    CAS  PubMed  Google Scholar 

  59. Beugnet, A., Tee, A. R., Taylor, P. M., and Proud, C. G. (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J. 372, 555–566.

    CAS  PubMed  Google Scholar 

  60. Lynch, C. J., Fox, H. L., Vary, T. C., Jefferson, L. S., and Kimbal,l S. R. (2000) Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J. Cell Biochem. 77, 234–251.

    CAS  PubMed  Google Scholar 

  61. Shigemitsu, K., Tsujishita, Y., Miyake, H., et al. (1999) Structural requirement of leucine for activation of p70 S6 kinase. FEBS Lett. 447, 303–306.

    CAS  PubMed  Google Scholar 

  62. Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J., and Proud, C. G. (2005) The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717–18727.

    CAS  PubMed  Google Scholar 

  63. Roccio, M., Bos, J. L., and Zwartkruis, F. J. (2006) Regulation of the small GTPase Rheb by amino acids. Oncogene 25, 657–664.

    CAS  PubMed  Google Scholar 

  64. Tzatsos, A. and Kandror, K. V. (2006) Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol. Cell Biol. 26, 63–76.

    CAS  PubMed  Google Scholar 

  65. Long, X., Ortiz-Vega, S., Lin, Y., and Avruch, J. (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280, 23433–23436.

    CAS  PubMed  Google Scholar 

  66. Lynch, C. J., Halle, B., Fujii, H., et al. (2003) Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am. J. Physiol. Endocrinol. Metab. 285, E854–E863.

    CAS  PubMed  Google Scholar 

  67. Xu, G., Kwon, G., Cruz, W. S., Marshall, C. A., and McDaniel, M. L. (2001) Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 50, 353–360.

    CAS  PubMed  Google Scholar 

  68. Pfaff, E. and Klingenberg, M. (1968) Adenine nucleotide translocation of mitochondria. 1. Specificity and control. Eur. J. Biochem. 6, 66–79.

    CAS  PubMed  Google Scholar 

  69. Goto, S., Chuman, H., Majima, E., and Terada, H. (2002) How does the mitochondrial ADP/ATP carrier distinguish transportable ATP and ADP from untransportable AMP and GTP?Dynamic modeling of the recognition/translocation process in the major substrate binding region. Biochim. Biophys. Acta 1589, 203–218.

    CAS  PubMed  Google Scholar 

  70. Tsuiki, H., Nitta, M., Furuya, A., et al. (1999) A novel human nucleoside diphosphate (NDP) kinase, Nm23-H6, localizes in mitochondria and affects cytokinesis. J. Cell Biochem. 76, 254–269.

    CAS  PubMed  Google Scholar 

  71. Lipskaya, T. Y. and Voinova, V. V. (2005) Functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation. Biochemistry (Mosc.) 70, 1354–1362.

    CAS  Google Scholar 

  72. Board, M., Humm, S., and Newsholme, E. A. (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem. J. 265, 503–509.

    CAS  PubMed  Google Scholar 

  73. Scherz-Shouval, R., Shvets, E., Fass, E., et al. (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760.

    CAS  PubMed  Google Scholar 

  74. Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., et al. (2006) NF-KappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 281, 30373–30382.

    CAS  PubMed  Google Scholar 

  75. Martin, F., Pintor, J., Rovira, J. M., Ripoll, C., Miras-Portugal, M. T., and Soria, B. (1998) Intracellular diadenosine polyphosphates: a novel second messenger in stimulus-secretion coupling. FASEB J. 12, 1499–1506.

    CAS  PubMed  Google Scholar 

  76. Desai, B. N., Myers, B. R., and Schreiber, S. L. (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 99, 4319–4324.

    CAS  PubMed  Google Scholar 

  77. Schieke, S. M., Phillips, D., McCoy ,J. P., Jr., et al. (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem. 281, 27643–27652.

    CAS  PubMed  Google Scholar 

  78. Weekes, J., Hawley, S. A., Corton, J., Shugar, D., and Hardie, D. G. (1994) Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur. J. Biochem. 219,751–757.

    CAS  PubMed  Google Scholar 

  79. Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J., and Hinnebusch, A. G. (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269–279.

    CAS  PubMed  Google Scholar 

  80. Natarajan, K., Meyer, M. R., Jackson, B. M., et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell Biol. 21, 4347–4368.

    CAS  PubMed  Google Scholar 

  81. Cherkasova, V. A. and Hinnebusch, A. G. (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 17, 859–872.

    CAS  PubMed  Google Scholar 

  82. Talloczy, Z., Jiang, W., Virgin, H. W., et al. (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc. Natl. Acad. Sci. USA 99, 190–195.

    CAS  PubMed  Google Scholar 

  83. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., and Chen, J. (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945.

    CAS  PubMed  Google Scholar 

  84. Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A., and Chien, S. (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. USA 103, 4741–4746.

    CAS  PubMed  Google Scholar 

  85. Um, S. H., Frigerio, F., Watanabe, M., et al. (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205.

    CAS  PubMed  Google Scholar 

  86. Khamzina, L., Veilleux, A., Bergeron, S., and Marette, A. (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473–1481.

    CAS  PubMed  Google Scholar 

  87. Um, S. H., D’Alessio, D., and Thomas, G. (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3, 393–402.

    CAS  PubMed  Google Scholar 

  88. Wijekoon, E. P., Skinner, C., Brosnan, M. E., and Brosnan, J. T. (2004) Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can. J. Physiol Pharmacol. 82, 506–514.

    CAS  PubMed  Google Scholar 

  89. Wang, X., Hu, Z., Hu, J., Du, J., and Mitch, W. E. (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147, 4160–4168.

    CAS  PubMed  Google Scholar 

  90. Klionsky, D. J., Meijer, A. J., Codogno, P., Neufeld, T. P., and Scott, R. C. (2005) Autophagy and p70S6 Kinase. Autophagy 1, 59–61.

    CAS  PubMed  Google Scholar 

  91. Scott, R. C., Schuldiner, O., and Neufeld, T. P. (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell. 7, 167–178.

    CAS  PubMed  Google Scholar 

  92. Ravikumar, B., Vacher, C., Berger, Z., et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.

    CAS  PubMed  Google Scholar 

  93. Yamamoto, A., Cremona, M. L., and Rothman, J. E. (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731.

    CAS  PubMed  Google Scholar 

  94. Meijer, A. J. and Codogno, P. (2004) Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell Biol. 36, 2445–2462.

    CAS  PubMed  Google Scholar 

  95. Scarlatti, F., Bauvy, C., Ventruti, A., et al. (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279, 18384–18391.

    CAS  PubMed  Google Scholar 

  96. Hyde, R., Hajduch, E., Powell, D. J., Taylor, P. M., and Hundal, H. S. (2005) Ceramide down-regulates System A amino acid transport and protein synthesis in rat skeletal muscle cells. FASEB J. 19, 461–463.

    CAS  PubMed  Google Scholar 

  97. Häussinger, D., Schliess, F., Dombrowski, F., and vom Dahl, S. (1999) Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology 116, 921–935.

    PubMed  Google Scholar 

  98. vom Dahl, S., Schliess, F., Reissmann, R., et al. (2003) Involvement of integrins in osmosensing and signaling toward autophagic proteolysis in rat liver. J. Biol. Chem. 278, 27088–27095.

    Google Scholar 

  99. Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004) Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver. J. Biol. Chem. 279, 21294–21301.

    CAS  PubMed  Google Scholar 

  100. Turban, S., Beardmore, V. A., Carr, J. M., et al. (2005) Insulin-stimulated glucose uptake does not require p38 mitogen-activated protein kinase in adipose tissue or skeletal muscle. Diabetes 54, 3161–3168.

    CAS  PubMed  Google Scholar 

  101. Mortimore, G. E., Miotto, G., Venerando, R., and Kadowaki, M. (1996) Autophagy. Subcell. Biochem. 27, 93–135.

    CAS  PubMed  Google Scholar 

  102. Meijer, A. J., Gustafson, L. A., Luiken, J. J., et al. (1993) Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur. J. Biochem. 215, 449–454.

    CAS  PubMed  Google Scholar 

  103. Codogno, P. and Meijer, A. J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death. Differ. 12, 1509–1518.

    CAS  PubMed  Google Scholar 

  104. Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477.

    CAS  PubMed  Google Scholar 

  105. Kondo, Y., Kanzawa, T., Sawaya, R., and Kondo, S. (2005) The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726–734.

    CAS  PubMed  Google Scholar 

  106. Ng, G. and Huang, J. (2005) The significance of autophagy in cancer. Mol. Carcinog. 43, 183–187.

    CAS  PubMed  Google Scholar 

  107. Hait, W. N., Jin, S., and Yang, J. M. (2006) A matter of life or death (or both): understanding autophagy in cancer. Clin. Cancer Res. 12, 1961–1965.

    CAS  PubMed  Google Scholar 

  108. Botti, J., Djavaheri-Mergny, M., Pilatte, Y., and Codogno, P. (2006) Autophagy signaling and the cogwheels of cancer. Autophagy 2, 67–73.

    CAS  PubMed  Google Scholar 

  109. Cuervo, A. M., Bergamini, E., Brunk, U. T., Droge, W., French, M., and Terman, A. (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1, 131–140.

    PubMed  Google Scholar 

  110. Tatar, M., Bartke, A., and Antebi, A. (2003) The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351.

    CAS  PubMed  Google Scholar 

  111. Katic, M. and Kahn, C. R. (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol. Life Sci. 62, 320–343.

    CAS  PubMed  Google Scholar 

  112. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H., and Levine, B. (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391.

    CAS  PubMed  Google Scholar 

  113. Kurosu, H., Yamamoto, M., Clark, J. D., et al. (2005) Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833.

    CAS  PubMed  Google Scholar 

  114. Haigis, M. C., Mostoslavsky, R., Haigis, K. M., et al. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941–954.

    CAS  PubMed  Google Scholar 

  115. Lowell, B. B. and Shulman, G. I. (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meijer, A.J. (2008). Amino Acid Regulation of Autophagosome Formation. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics