Skip to main content
Top

03-29-2018 | Insulin | Article

Probability of Achieving Glycemic Control with Basal Insulin in Patients with Type 2 Diabetes in Real-World Practice in the USA

Journal: Diabetes Therapy

Authors: Lawrence Blonde, Luigi Meneghini, Xuejun Victor Peng, Anders Boss, Kyu Rhee, Alka Shaunik, Supriya Kumar, Sidhartha Balodi, Claire Brulle-Wohlhueter, Rory J. McCrimmon

Publisher: Springer Healthcare

Abstract

Introduction

Basal insulin (BI) plays an important role in treating type 2 diabetes (T2D), especially when oral antidiabetic (OAD) medications are insufficient for glycemic control. We conducted a retrospective, observational study using electronic medical records (EMR) data from the IBM® Explorys database to evaluate the probability of achieving glycemic control over 24 months after BI initiation in patients with T2D in the USA.

Methods

A cohort of 6597 patients with T2D who started BI following OAD(s) and had at least one valid glycated hemoglobin (HbA1c) result recorded both within 90 days before and 720 days after BI initiation were selected. We estimated the changes from baseline in HbA1c every 6 months, the quarterly conditional probabilities of reaching HbA1c < 7% if a patient had not achieved glycemic control prior to each quarter (Q), and the cumulative probability of reaching glycemic control over 24 months.

Results

Our cohort was representative of patients with T2D who initiated BI from OADs in the USA. The average HbA1c was 9.1% at BI initiation, and decreased robustly (1.5%) in the first 6 months after initiation with no further reductions thereafter. The conditional probability of reaching glycemic control decreased rapidly in the first year (26.6% in Q2; 17.6% in Q3; 8.6% in Q4), and then remained low (≤ 6.1%) for each quarter in the second year. Cumulatively, about 38% of patients reached HbA1c < 7% in the first year; only approximately 8% more did so in the second year.

Conclusion

Our study of real-world data from a large US EMR database suggested that among patients with T2D who initiated BI after OADs, the likelihood of reaching glycemic control diminished over time, and remained low from 12 months onwards. Additional treatment options should be considered if patients do not reach glycemic control within 12 months of BI initiation.

Funding

Sanofi Corporation.
Literature
1.
Centers for Disease Control. National diabetes statistics report, 2017. [article online], 2018. https://​www.​cdc.​gov/​diabetes/​data/​statistics-report/​index.​html. Accessed 22 Jan 2018.
2.
Dandona P. Minimizing glycemic fluctuations in patients with type 2 diabetes: approaches and importance. Diabetes Technol Ther. 2017;19(9):498–506.CrossRef
3.
Paul SK, Klein K, Thorsted BL, Wolden ML, Khunti K. Delay in treatment intensification increases the risks of cardiovascular events in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:100.
4.
Stokes A, Preston SH. Deaths attributable to diabetes in the United States: comparison of data sources and estimation approaches. PLoS One. 2017;12(1):e0170219.CrossRef
5.
Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.CrossRef
6.
American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Suppl 1):S55–64.CrossRef
7.
Esposito K, Chiodini P, Bellastella G, Maiorino MI, Giugliano D. Proportion of patients at HbA1c target < 7% with eight classes of antidiabetic drugs in type 2 diabetes: systematic review of 218 randomized controlled trials with 78 945 patients. Diabetes Obes Metab. 2012;14(3):228–33.CrossRef
8.
Hermansen K, Davies M, Derezinski T, Martinez RG, Clauson P, Home P. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care. 2006;29(6):1269–74.CrossRef
9.
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2016 executive summary. Endocr Pract. 2016;22(1):84–113.CrossRef
10.
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.CrossRef
11.
Dalal MR, Grabner M, Bonine N, Stephenson JJ, DiGenio A, Bieszk N. Are patients on basal insulin attaining glycemic targets? Characteristics and goal achievement of patients with type 2 diabetes mellitus treated with basal insulin and physician-perceived barriers to achieving glycemic targets. Diabetes Res Clin Pract. 2016;121:17–26.
12.
Gordon J, Pockett RD, Tetlow AP, McEwan P, Home PD. A comparison of intermediate and long-acting insulins in people with type 2 diabetes starting insulin: an observational database study. Int J Clin Pract. 2010;64(12):1609–18.CrossRef
13.
Harris SB, Kapor J, Lank CN, Willan AR, Houston T. Clinical inertia in patients with T2DM requiring insulin in family practice. Can Fam Physician. 2010;56(12):e418–24.PubMedPubMedCentral
14.
Heintjes EM, Thomsen TL, Penning-van Beest FJ, Christensen TE, Herings RM. Glycemic control and long-acting insulin analog utilization in patients with type 2 diabetes. Adv Ther. 2010;27(4):211–22.CrossRef
15.
Levin PA, Zhou S, Durden E, Farr AM, Gill J, Wei W. Clinical and economic outcomes associated with the timing of initiation of basal insulin in patients with type 2 diabetes mellitus previously treated with oral antidiabetes drugs. Clin Ther. 2016;38(1):110–21.CrossRef
16.
Lin SD, Tsai ST, Tu ST, et al. Glycosylated hemoglobin level and number of oral antidiabetic drugs predict whether or not glycemic target is achieved in insulin-requiring type 2 diabetes. Prim Care Diabetes. 2015;9(2):135–41.CrossRef
17.
Mauricio D, Meneghini L, Seufert J, et al. Glycaemic control and hypoglycaemia burden in patients with type 2 diabetes initiating basal insulin in Europe and the USA. Diabetes Obes Metab. 2017;19(19):1155–64.CrossRef
18.
Wu N, Aagren M, Boulanger L, Friedman M, Wilkey K. Assessing achievement and maintenance of glycemic control by patients initiating basal insulin. Curr Med Res Opin. 2012;28(10):1647–56.CrossRef
19.
Kostev K, Dippel FW, Rathmann W. Glycemic control after initiating basal insulin therapy in patients with type 2 diabetes: a primary care database analysis. Diabetes Metab Syndr Obes. 2015;8:45–8.
20.
Kim SG, Kim NH, Ku BJ, et al. Delay of insulin initiation in patients with type 2 diabetes mellitus inadequately controlled with oral hypoglycemic agents (analysis of patient- and physician-related factors): a prospective observational DIPP-FACTOR study in Korea. J Diabetes Investig. 2017;8(3):346–53.CrossRef
21.
Peyrot M, Rubin RR, Lauritzen T, et al. Resistance to insulin therapy among patients and providers: results of the cross-national Diabetes Attitudes, Wishes, and Needs (DAWN) study. Diabetes Care. 2005;28(11):2673–9.CrossRef
22.
Strain WD, Cos X, Hirst M, et al. Time to do more: addressing clinical inertia in the management of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014;105(3):302–12.CrossRef
23.
Khunti K, Millar-Jones D. Clinical inertia to insulin initiation and intensification in the UK: a focused literature review. Prim Care Diabetes. 2017;11(1):3–12.CrossRef
24.
Khunti K, Nikolajsen A, Thorsted BL, Andersen M, Davies MJ, Paul SK. Clinical inertia with regard to intensifying therapy in people with type 2 diabetes treated with basal insulin. Diabetes Obes Metab. 2016;18(4):401–9.CrossRef
25.
Berard L, Bonnemaire M, Mical M, Edelman S. Insights into optimal basal insulin titration in type 2 diabetes: results of a quantitative survey. Diabetes Obes Metab. 2018;20(2):301–8.CrossRef
26.
McFarlane SI. Insulin therapy and type 2 diabetes: management of weight gain. J Clin Hypertens (Greenwich). 2009;11(10):601–7.CrossRef
27.
Polonsky WH, Thompson S, Wei W, et al. Greater fear of hypoglycaemia with premixed insulin than with basal-bolus insulin glargine and glulisine: patient-reported outcomes from a 60-week randomised study. Diabetes Obes Metab. 2014;16(11):1121–7.CrossRef
28.
Vijan S, Hayward RA, Ronis DL, Hofer TP. Brief report: the burden of diabetes therapy: implications for the design of effective patient-centered treatment regimens. J Gen Intern Med. 2005;20(5):479–82.CrossRef
29.
Cai X, Gao X, Yang W, Ji L. Comparison between insulin degludec/liraglutide treatment and insulin glargine/lixisenatide treatment in type 2 diabetes: a systematic review and meta-analysis. Expert Opin Pharmacother. 2017;18(17):1789–98.CrossRef
30.
Steen O, Goldenberg RM. The role of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Can J Diabetes. 2017;41(5):517–23.CrossRef
31.
Valentine V, Goldman J, Shubrook JH. Rationale for, initiation and titration of the basal insulin/GLP-1RA fixed-ratio combination products, IDegLira and iGlarLixi, for the management of type 2 diabetes. Diabetes Ther. 2017;8(4):739–52.CrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »