Skip to main content

08-24-2017 | Insulin pumps | Article

Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial

Journal: Diabetologia

Authors: Klemen Dovc, Maddalena Macedoni, Natasa Bratina, Dusanka Lepej, Revital Nimri, Eran Atlas, Ido Muller, Olga Kordonouri, Torben Biester, Thomas Danne, Moshe Phillip, Tadej Battelino

Publisher: Springer Berlin Heidelberg



Hypoglycaemia during and after exercise remains a challenge. The present study evaluated the safety and efficacy of closed-loop insulin delivery during unannounced (to the closed-loop algorithm) afternoon physical activity and during the following night in young people with type 1 diabetes.


A randomised, two-arm, open-label, in-hospital, crossover clinical trial was performed at a single site in Slovenia. The order was randomly determined using an automated web-based programme with randomly permuted blocks of four. Allocation assignment was not masked. Children and adolescents with type 1 diabetes who were experienced insulin pump users were eligible for the trial. During four separate in-hospital visits, the participants performed two unannounced exercise protocols: moderate intensity (55% of \( \overset{\cdot }{V}{\mathrm{O}}_{2\max } \)) and moderate intensity with integrated high-intensity sprints (55/80% of \( \overset{\cdot }{V}{\mathrm{O}}_{2\max } \)), using the same study device either for closed-loop or open-loop insulin delivery. We investigated glycaemic control during the exercise period and the following night. The closed-loop insulin delivery was applied from 15:00 h on the day of the exercise to 13:00 h on the following day.


Between 20 January and 16 June 2016, 20 eligible participants (9 female, mean age 14.2 ± 2.0 years, HbA1c 7.7 ± 0.6% [60.0 ± 6.6 mmol/mol]) were included in the trial and performed all trial-mandated activities. The median proportion of time spent in hypoglycaemia below 3.3 mmol/l was 0.00% for both treatment modalities (p = 0.7910). Use of the closed-loop insulin delivery system increased the proportion of time spent within the target glucose range of 3.9–10 mmol/l when compared with open-loop delivery: 84.1% (interquartile range 70.0–85.5) vs 68.7% (59.0–77.7), respectively (p = 0.0057), over the entire study period. This was achieved with significantly less insulin delivered via the closed-loop (p = 0.0123).


Closed-loop insulin delivery was safe both during and after unannounced exercise protocols in the in-hospital environment, maintaining glucose values mostly within the target range without an increased risk of hypoglycaemia.

Trial registration


University Medical Centre Ljubljana, Slovenian National Research Agency, and ISPAD Research Fellowship
Colberg SR, Sigal RJ, Yardley JE et al (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079 CrossRefPubMed
MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH (2014) A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes 15:175–189 CrossRefPubMed
Bohn B, Herbst A, Pfeifer M et al (2015) Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients. Diabetes Care 38:1536–1543 CrossRefPubMed
Adolfsson P, Nilsson S, Albertsson-Wikland K, Lindblad B (2012) Hormonal response during physical exercise of different intensities in adolescents with type 1 diabetes and healthy controls. Pediatr Diabetes 13:587–596 CrossRefPubMed
Metcalf KM, Singhvi A, Tsalikian E et al (2014) Effects of moderate-to-vigorous intensity physical activity on overnight and next-day hypoglycemia in active adolescents with type 1 diabetes. Diabetes Care 37:1272–1278 CrossRefPubMedPubMedCentral
Thabit H, Leelarathna L (2016) Basal insulin delivery reduction for exercise in type 1 diabetes: finding the sweet spot. Diabetologia 59:1628–1631 CrossRefPubMedPubMedCentral
McAuley SA, Horsburgh JC, Ward GM et al (2016) Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia 59:1636–1644 CrossRefPubMed
Riddell MC, Gallen IW, Smart CE et al (2017) Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 5:377–390 CrossRefPubMed
Tonoli C, Heyman E, Roelands B et al (2012) Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med 42:1059–1080 CrossRefPubMed
Robertson K, Riddell MC, Guinhouya BC, Adolfsson P, Hanas R, International Society for Pediatric and Adolescent Diabetes (2014) ISPAD clinical practice consensus guidelines 2014. Exercise in children and adolescents with diabetes. Pediatr Diabetes 15:203–223 CrossRefPubMed
Phillip M, Battelino T, Atlas E et al (2013) Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med 368:824–833 CrossRefPubMed
Thabit H, Tauschmann M, Allen JM et al (2015) Home use of an artificial beta cell in type 1 diabetes. N Engl J Med 273:2129–2140 CrossRef
Kropff J, Del Favero S, Place J et al (2015) 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol 3:939–947 CrossRefPubMed
Russell SJ, Hillard MA, Balliro C et al (2016) Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol 4:233–243 CrossRefPubMedPubMedCentral
Nimri R, Muller I, Atlas E et al (2014) MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care 37:3025–3032 CrossRefPubMed
Bally L, Thabit H, Kojzar H et al (2017) Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol 5:261–270 CrossRefPubMedPubMedCentral
DeBoer MD, Cherñavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD (2016) Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D. Pediatr Diabetes doi: 10.​1111/​pedi.​12454
Taleb N, Emami A, Suppere C et al (2016) Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia 59:2561–2571 CrossRefPubMed
Elleri D, Allen JM, Kumareswaran K et al (2013) Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: randomized clinical trial. Diabetes Care 36:838–844 CrossRefPubMedPubMedCentral
Sherr JL, Cengiz E, Palerm CC et al (2013) Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes. Diabetes Care 36:2909–2914 CrossRefPubMedPubMedCentral
Atlas E, Nimri R, Miller S et al (2010) MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33:1072–1076 CrossRefPubMedPubMedCentral
Maahs DM, Buckingham BA, Castle JR et al (2016) Outcome measures for artificial pancreas clinical trials: a consensus report. Diabetes Care 39:1175–1179 CrossRefPubMedPubMedCentral
Nimri R, Muller I, Atlas E et al (2014) Night glucose control with MD-Logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis. Pediatr Diabetes 15:91–99 CrossRefPubMed
Nimri R, Bratina N, Kordonouri O et al (2016) MD-Logic overnight type 1 diabetes control in home settings: a multicentre, multinational, single blind randomized trial. Diabetes Obes Metab doi: 10.​1111/​dom.​12852
Dovc K, Telic SS, Lusa L et al (2014) Improved metabolic control in pediatric patients with type 1 diabetes: a nationwide prospective 12-year time trends analysis. Diabetes Technol Ther 16:33–40 CrossRefPubMedPubMedCentral
Abraham MB, Davey R, O’Grady MJ et al (2016) Effectiveness of a predictive algorithm in the prevention of exercise-induced hypoglycemia in type 1 diabetes. Diabetes Technol Ther 18:543–550 CrossRefPubMed
Battelino T, Nimri R, Dovc K, Phillip M, Bratina N (2017) Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care 40:764–770 CrossRefPubMed
Mazaika PK, Weinzimer SA, Mauras N et al (2016) Variations in brain volume and growth in young children with type 1 diabetes. Diabetes 65:476–485 CrossRefPubMed
Breton MD, Brown SA, Karvetski CH et al (2014) Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol Ther 16:506–511 CrossRefPubMedPubMedCentral
Patel NS, Van Name MA, Cengiz E et al (2016) Mitigating reductions in glucose during exercise on closed-loop insulin delivery: the Ex-Snacks Study. Diabetes Technol Ther 18:794–799 CrossRefPubMed

Novel clinical evidence in continuous glucose monitoring

Novel clinical evidence in continuous glucose monitoring

How real-world studies complement randomized controlled trials

Jean-Pierre Riveline uses data from real-life continuous glucose monitoring studies to illustrate how these can uncover critical information about clinical outcomes that are hard to assess in randomized controlled trials.

This video has been developed through unrestricted educational funding from Abbott Diabetes Care.

Watch the video