Skip to main content
Top

10-05-2018 | Hyperglycemia | Article

Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

Journal: Diabetologia

Authors: Melanie J. Davies, David A. D’Alessio, Judith Fradkin, Walter N. Kernan, Chantal Mathieu, Geltrude Mingrone, Peter Rossing, Apostolos Tsapas, Deborah J. Wexler, John B. Buse

Publisher: Springer Berlin Heidelberg

Abstract

The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the prior position statements, published in 2012 and 2015, on the management of type 2 diabetes in adults. A systematic evaluation of the literature since 2014 informed new recommendations. These include additional focus on lifestyle management and diabetes self-management education and support. For those with obesity, efforts targeting weight loss, including lifestyle, medication and surgical interventions, are recommended. With regards to medication management, for patients with clinical cardiovascular disease, a sodium–glucose cotransporter-2 (SGLT2) inhibitor or a glucagon-like peptide-1 (GLP-1) receptor agonist with proven cardiovascular benefit is recommended. For patients with chronic kidney disease or clinical heart failure and atherosclerotic cardiovascular disease, an SGLT2 inhibitor with proven benefit is recommended. GLP-1 receptor agonists are generally recommended as the first injectable medication.
Literature
1.
Rodriguez-Gutierrez R, Gionfriddo MR, Ospina NS et al (2016) Shared decision making in endocrinology: present and future directions. Lancet Diabetes Endocrinol 4:706–716. https://​doi.​org/​10.​1016/​S2213-8587(15)00468-4 CrossRefPubMed
2.
American Diabetes Association (2018) 6. Glycemic targets: standards of medical care in diabetes—2018. Diabetes Care 41:S55–S64. https://​doi.​org/​10.​2337/​dc18-S006 CrossRef
3.
American Diabetes Association (2018) 8. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2018. Diabetes Care 41:S73–S85. https://​doi.​org/​10.​2337/​dc18-S008 CrossRef
4.
Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55:1577–1596CrossRefPubMed
5.
Inzucchi SE, Bergenstal RM, Buse JB et al (2015) Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centered approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58:429–442. https://​doi.​org/​10.​2337/​dc14-2441 CrossRefPubMed
6.
Riddle MC, Gerstein HC, Holman RR et al (2018) A1C targets should be personalized to maximize benefits while limiting risks. Diabetes Care 41:1121–1124. https://​doi.​org/​10.​2337/​dci18-0018 CrossRefPubMed
7.
American Diabetes Association (2018) 9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care 41:S86–S104. https://​doi.​org/​10.​2337/​dc18-S009 CrossRef
8.
Gæde P, Oellgaard J, Carstensen B et al (2016) Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia 59:2298–2307. https://​doi.​org/​10.​1007/​s00125-016-4065-6 CrossRefPubMedPubMedCentral
9.
Khunti K, Kosiborod M, Ray KK (2018) Legacy benefits of blood glucose, blood pressure and lipid control in individuals with diabetes and cardiovascular disease: time to overcome multifactorial therapeutic inertia? Diabetes Obes Metab 20:1337–1341. https://​doi.​org/​10.​1111/​dom.​13243 CrossRefPubMed
10.
Gregg EW, Sattar N, Ali MK (2016) The changing face of diabetes complications. Lancet Diabetes Endocrinol 4:537–547. https://​doi.​org/​10.​1016/​S2213-8587(16)30010-9 CrossRefPubMed
11.
Little RR, Rohlfing CL, Sacks DB (2011) Status of HbA1c measurement and goals for improvement: from chaos to order for improving diabetes care. Clin Chem 57:204–214
12.
American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41:S13–S27. https://​doi.​org/​10.​2337/​dc18-S002 CrossRef
13.
Mannucci E, Antenore A, Giorgino F, Scavini M (2018) Effects of structured versus unstructured self-monitoring of blood glucose on glucose control in patients with non-insulin-treated type 2 diabetes: a meta-analysis of randomized controlled trials. J Diabetes Sci Technol 12:183–189. https://​doi.​org/​10.​1177/​1932296817719290​ CrossRefPubMed
14.
Young LA, Buse JB, Weaver MA et al (2017) Glucose self-monitoring in non–insulin-treated patients with type 2 diabetes in primary care settings: a randomized trial. JAMA Intern Med 177:920–929. https://​doi.​org/​10.​1001/​jamainternmed.​2017.​1233 CrossRefPubMedPubMedCentral
15.
Anjana RM, Kesavadev J, Neeta D et al (2017) A multicenter real-life study on the effect of flash glucose monitoring on glycemic control in patients with type 1 and type 2 diabetes. Diabetes Technol Ther 19:533–540CrossRefPubMed
16.
American Diabetes Association (2018) 3. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes—2018. Diabetes Care 41:S28–S37. https://​doi.​org/​10.​2337/​dc18-S003 CrossRef
17.
Kunneman M, Montori VM, Castaneda-Guarderas A, Hess EP (2016) What is shared decision making? (and what it is not). Acad Emerg Med 23:1320–1324. https://​doi.​org/​10.​1111/​acem.​13065 CrossRefPubMed
18.
Breslin M, Mullan RJ, Montori VM (2008) The design of a decision aid about diabetes medications for use during the consultation with patients with type 2 diabetes. Patient Educ Couns 73:465–472. https://​doi.​org/​10.​1016/​j.​pec.​2008.​07.​024 CrossRefPubMed
19.
Mullan RJ, Montori VM, Shah ND et al (2009) The diabetes mellitus medication choice decision aid: a randomized trial. Arch Intern Med 169:1560–1568. https://​doi.​org/​10.​1001/​archinternmed.​2009.​293 CrossRefPubMed
20.
Stacey D, Légaré F, Lewis K et al (2017) Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev 4:CD001431. https://​doi.​org/​10.​1002/​14651858.​CD001431.​pub5 CrossRefPubMed
21.
American Diabetes Association (2018) 4. Lifestyle management: standards of medical care in diabetes—2018. Diabetes Care 41:S38–S50. https://​doi.​org/​10.​2337/​dc18-S004 CrossRef
22.
Powers MA, Bardsley J, Cypress M et al (2015) Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care 38:1372–1382. https://​doi.​org/​10.​2337/​dc15-0730 CrossRefPubMed
23.
Department of Health; Diabetes UK (2005) Structured patient education in diabetes: report from the Patient Education Working Group. Available from http://​webarchive.​nationalarchives​.​gov.​uk/​20130105204013/​http://​www.​dh.​gov.​uk/​en/​Publicationsands​tatistics/​Publications/​PublicationsPoli​cyAndGuidance/​DH_​4113195. Accessed 29 Aug 2018
24.
National Institute for Health and Clinical Excellence (2011) Quality standard for diabetes in adults, statements 2 and 3. Available from https://​www.​nice.​org.​uk/​guidance/​qs6. Accessed 29 Aug 2018
25.
Beck J, Greenwood DA, Blanton L et al (2017) 2017 national standards for diabetes self-management education and support. Diabetes Educ 43:449–464CrossRefPubMed
26.
Chrvala CA, Sherr D, Lipman RD (2016) Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 99:926–943. https://​doi.​org/​10.​1016/​j.​pec.​2015.​11.​003 CrossRefPubMed
27.
Pillay J, Armstrong MJ, Butalia S et al (2015) Behavioral programs for type 2 diabetes mellitus: a systematic review and network meta-analysis. Ann Intern Med 163:848. https://​doi.​org/​10.​7326/​M15-1400 CrossRefPubMed
28.
Zhao F-F, Suhonen R, Koskinen S, Leino-Kilpi H (2017) Theory-based self-management educational interventions on patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Adv Nurs 73:812–833. https://​doi.​org/​10.​1111/​jan.​13163 CrossRefPubMed
29.
Odgers-Jewell K, Ball LE, Kelly JT et al (2017) Effectiveness of group-based self-management education for individuals with type 2 diabetes: a systematic review with meta-analyses and meta-regression. Diabet Med 34:1027–1039. https://​doi.​org/​10.​1111/​dme.​13340 CrossRefPubMed
30.
He X, Li J, Wang B et al (2017) Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine 55:712–731. https://​doi.​org/​10.​1007/​s12020-016-1168-2 CrossRefPubMed
31.
Chatterjee S, Davies MJ, Heller S et al (2018) Diabetes structured self-management education programmes: a narrative review and current innovations. Lancet Diabetes Endocrinol 6:130–142. https://​doi.​org/​10.​1016/​S2213-8587(17)30239-5 CrossRefPubMed
32.
Egede LE, Gebregziabher M, Echols C, Lynch CP (2014) Longitudinal effects of medication nonadherence on glycemic control. Ann Pharmacother 48:562–570. https://​doi.​org/​10.​1177/​1060028014526362​ CrossRefPubMed
33.
Huber CA, Reich O (2016) Medication adherence in patients with diabetes mellitus: does physician drug dispensing enhance quality of care? Evidence from a large health claims database in Switzerland. Patient Prefer Adherence 10:1803–1809. https://​doi.​org/​10.​2147/​PPA.​S115425 CrossRefPubMedPubMedCentral
34.
Iglay K, Cartier SE, Rosen VM et al (2015) Meta-analysis of studies examining medication adherence, persistence, and discontinuation of oral antihyperglycemic agents in type 2 diabetes. Curr Med Res Opin 31:1283–1296. https://​doi.​org/​10.​1185/​03007995.​2015.​1053048 CrossRefPubMed
35.
McGovern A, Tippu Z, Hinton W et al (2016) Systematic review of adherence rates by medication class in type 2 diabetes: a study protocol. BMJ Open 6:e010469. https://​doi.​org/​10.​1136/​bmjopen-2015-010469 CrossRefPubMedPubMedCentral
36.
Khunti K, Seidu S, Kunutsor S, Davies M (2017) Association between adherence to pharmacotherapy and outcomes in type 2 diabetes: a meta-analysis. Diabetes Care 40:1588–1596. https://​doi.​org/​10.​2337/​dc16-1925 CrossRefPubMed
37.
Polonsky WH, Henry RR (2016) Poor medication adherence in type 2 diabetes: recognizing the scope of the problem and its key contributors. Patient Prefer Adherence 10:1299–1307. https://​doi.​org/​10.​2147/​PPA.​S106821 CrossRefPubMedPubMedCentral
38.
McGovern A, Tippu Z, Hinton W et al (2018) Comparison of medication adherence and persistence in type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 20:1040–1043. https://​doi.​org/​10.​1111/​dom.​13160 CrossRefPubMed
39.
Lasalvia P, Barahona-Correa JE, Romero-Alvernia DM et al (2016) Pen devices for insulin self-administration compared with needle and vial: systematic review of the literature and meta-analysis. J Diabetes Sci Technol 10:959–966. https://​doi.​org/​10.​1177/​1932296816633721​ CrossRefPubMedPubMedCentral
40.
Khunti K, Davies MJ (2017) Clinical inertia—time to reappraise the terminology? Prim Care Diabetes 11:105–106. https://​doi.​org/​10.​1016/​j.​pcd.​2017.​01.​007 CrossRefPubMed
41.
Furler J, O’Neal D, Speight J et al (2017) Supporting insulin initiation in type 2 diabetes in primary care: results of the Stepping Up pragmatic cluster randomised controlled clinical trial. BMJ:j783. https://​doi.​org/​10.​1136/​bmj.​j783
42.
Manski-Nankervis J-A, Furler J, O’Neal D et al (2017) Overcoming clinical inertia in insulin initiation in primary care for patients with type 2 diabetes: 24-month follow-up of the Stepping Up cluster randomised controlled trial. Prim Care Diabetes 11:474–481. https://​doi.​org/​10.​1016/​j.​pcd.​2017.​06.​005 CrossRefPubMed
43.
Tabesh M, Magliano DJ, Koye DN, Shaw JE (2018) The effect of nurse prescribers on glycaemic control in type 2 diabetes: a systematic review and meta-analysis. Int J Nurs Stud 78:37–43. https://​doi.​org/​10.​1016/​j.​ijnurstu.​2017.​08.​018 CrossRefPubMed
44.
Murphy ME, Byrne M, Galvin R et al (2017) Improving risk factor management for patients with poorly controlled type 2 diabetes: a systematic review of healthcare interventions in primary care and community settings. BMJ Open 7:e015135. https://​doi.​org/​10.​1136/​bmjopen-2016-015135 CrossRefPubMedPubMedCentral
45.
American Diabetes Association (2018) 1. Improving care and promoting health in populations: standards of medical care in diabetes—2018. Diabetes Care 41:S7–S12. https://​doi.​org/​10.​2337/​dc18-S001 CrossRef
46.
Cefalu WT, Kaul S, Gerstein HC et al (2018) Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 41:14–31. https://​doi.​org/​10.​2337/​dci17-0057 CrossRefPubMed
47.
Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://​doi.​org/​10.​1056/​NEJMoa1603827 CrossRefPubMedPubMedCentral
48.
Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844. https://​doi.​org/​10.​1056/​NEJMoa1607141 CrossRefPubMed
49.
Holman RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377:1228–1239. https://​doi.​org/​10.​1056/​NEJMoa1612917 CrossRefPubMed
50.
Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257. https://​doi.​org/​10.​1056/​NEJMoa1509225 CrossRefPubMed
51.
Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://​doi.​org/​10.​1056/​NEJMoa1504720 CrossRefPubMed
52.
Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://​doi.​org/​10.​1056/​NEJMoa1611925 CrossRefPubMed
53.
Lehrke M, Marx N (2017) Diabetes mellitus and heart failure. Am J Med 130:S40–S50. https://​doi.​org/​10.​1016/​j.​amjmed.​2017.​04.​010 CrossRefPubMed
54.
Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 37:1526–1534. https://​doi.​org/​10.​1093/​eurheartj/​ehv728 CrossRefPubMedPubMedCentral
55.
Rådholm K, Figtree G, Perkovic V et al (2018) Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 138:458–468. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​118.​034222
56.
Margulies KB, Hernandez AF, Redfield MM et al (2016) Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316:500–508. https://​doi.​org/​10.​1001/​jama.​2016.​10260 CrossRefPubMedPubMedCentral
57.
Jorsal A, Kistorp C, Holmager P et al (2017) Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 19:69–77. https://​doi.​org/​10.​1002/​ejhf.​657 CrossRefPubMed
58.
Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326. https://​doi.​org/​10.​1056/​NEJMoa1307684 CrossRefPubMed
59.
White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335. https://​doi.​org/​10.​1056/​NEJMoa1305889 CrossRefPubMed
60.
Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242. https://​doi.​org/​10.​1056/​NEJMoa1501352 CrossRefPubMed
61.
Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334. https://​doi.​org/​10.​1056/​NEJMoa1515920 CrossRefPubMed
62.
Jardine MJ, Mahaffey KW, Neal B et al (2017) The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol 46:462–472. https://​doi.​org/​10.​1159/​000484633 CrossRefPubMed
63.
Mann JFE, Ørsted DD, Brown-Frandsen K et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377:839–848. https://​doi.​org/​10.​1056/​NEJMoa1616011 CrossRefPubMed
64.
Deacon CF (2018) A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials. Diabetes Obes Metab 20(Suppl 1):34–46. https://​doi.​org/​10.​1111/​dom.​13135 CrossRefPubMed
65.
American Diabetes Association (2018) 7. Obesity management for the treatment of type 2 diabetes: standards of medical care in diabetes—2018. Diabetes Care 41:S65–S72. https://​doi.​org/​10.​2337/​dc18-S007 CrossRef
66.
Shai I, Schwarzfuchs D, Henkin Y et al (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241. https://​doi.​org/​10.​1056/​NEJMoa0708681 CrossRefPubMed
67.
Esposito K, Maiorino MI, Ciotola M et al (2009) Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 151:306–314CrossRefPubMed
68.
Esposito K, Maiorino MI, Petrizzo M et al (2014) The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: follow-up of a randomized trial. Diabetes Care 37:1824–1830. https://​doi.​org/​10.​2337/​dc13-2899 CrossRefPubMed
69.
Huo R, Du T, Xu Y et al (2015) Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 69:1200–1208. https://​doi.​org/​10.​1038/​ejcn.​2014.​243 CrossRefPubMed
70.
Snorgaard O, Poulsen GM, Andersen HK, Astrup A (2017) Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care 5:e000354. https://​doi.​org/​10.​1136/​bmjdrc-2016-000354 CrossRefPubMedPubMedCentral
71.
Ajala O, English P, Pinkney J (2013) Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 97:505–516. https://​doi.​org/​10.​3945/​ajcn.​112.​042457 CrossRefPubMed
72.
Azadbakht L, Fard NRP, Karimi M et al (2011) Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care 34:55–57. https://​doi.​org/​10.​2337/​dc10-0676 CrossRefPubMed
73.
Sainsbury E, Kizirian NV, Partridge SR et al (2018) Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 139:239–252. https://​doi.​org/​10.​1016/​j.​diabres.​2018.​02.​026 CrossRefPubMed
74.
Yokoyama Y, Barnard ND, Levin SM, Watanabe M (2014) Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther 4:373–382. https://​doi.​org/​10.​3978/​j.​issn.​2223-3652.​2014.​10.​04 CrossRefPubMedPubMedCentral
75.
Lean ME, Leslie WS, Barnes AC et al (2018) Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391:541–551. https://​doi.​org/​10.​1016/​S0140-6736(17)33102-1 CrossRefPubMed
76.
Look AHEAD Research Group, Wing RR, Bolin P et al (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369:145–154. https://​doi.​org/​10.​1056/​NEJMoa1212914 CrossRef
77.
O’Neil PM, Miller-Kovach K, Tuerk PW et al (2016) Randomized controlled trial of a nationally available weight control program tailored for adults with type 2 diabetes. Obes Silver Spring Md 24:2269–2277. https://​doi.​org/​10.​1002/​oby.​21616 CrossRef
78.
Jebb SA, Ahern AL, Olson AD et al (2011) Primary care referral to a commercial provider for weight loss treatment versus standard care: a randomised controlled trial. Lancet 378:1485–1492. https://​doi.​org/​10.​1016/​S0140-6736(11)61344-5 CrossRefPubMedPubMedCentral
79.
Leblanc ES, O’Connor E, Whitlock EP et al (2011) Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 155:434–447. https://​doi.​org/​10.​7326/​0003-4819-155-7-201110040-00006 CrossRefPubMed
80.
Delahanty LM, Dalton KM, Porneala B et al (2015) Improving diabetes outcomes through lifestyle change – a randomized controlled trial. Obes Silver Spring Md 23:1792–1799. https://​doi.​org/​10.​1002/​oby.​21172 CrossRef
81.
Boulé NG, Haddad E, Kenny GP et al (2001) Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286:1218–1227CrossRefPubMed
82.
Chudyk A, Petrella RJ (2011) Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care 34:1228–1237. https://​doi.​org/​10.​2337/​dc10-1881 CrossRefPubMedPubMedCentral
83.
Yang Z, Scott CA, Mao C et al (2014) Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med Auckl NZ 44:487–499. https://​doi.​org/​10.​1007/​s40279-013-0128-8 CrossRef
84.
Balducci S, Zanuso S, Nicolucci A et al (2010) Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch Intern Med 170:1794–1803. https://​doi.​org/​10.​1001/​archinternmed.​2010.​380 CrossRefPubMed
85.
Schwingshackl L, Missbach B, Dias S et al (2014) Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia 57:1789–1797. https://​doi.​org/​10.​1007/​s00125-014-3303-z CrossRefPubMed
86.
Qiu S, Cai X, Schumann U et al (2014) Impact of walking on glycemic control and other cardiovascular risk factors in type 2 diabetes: a meta-analysis. PLoS One 9:e109767. https://​doi.​org/​10.​1371/​journal.​pone.​0109767 CrossRefPubMedPubMedCentral
87.
Rees JL, Johnson ST, Boulé NG (2017) Aquatic exercise for adults with type 2 diabetes: a meta-analysis. Acta Diabetol 54:895–904. https://​doi.​org/​10.​1007/​s00592-017-1023-9 CrossRefPubMed
88.
Pai L-W, Li T-C, Hwu Y-J et al (2016) The effectiveness of regular leisure-time physical activities on long-term glycemic control in people with type 2 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 113:77–85. https://​doi.​org/​10.​1016/​j.​diabres.​2016.​01.​011 CrossRefPubMed
89.
Lee MS, Jun JH, Lim H-J, Lim H-S (2015) A systematic review and meta-analysis of tai chi for treating type 2 diabetes. Maturitas 80:14–23. https://​doi.​org/​10.​1016/​j.​maturitas.​2014.​09.​008 CrossRefPubMed
90.
Cui J, Yan J-H, Yan L-M et al (2017) Effects of yoga in adults with type 2 diabetes mellitus: a meta-analysis. J Diabetes Investig 8:201–209. https://​doi.​org/​10.​1111/​jdi.​12548 CrossRefPubMed
91.
Qiu S, Cai X, Chen X et al (2014) Step counter use in type 2 diabetes: a meta-analysis of randomized controlled trials. BMC Med 12:36. https://​doi.​org/​10.​1186/​1741-7015-12-36 CrossRefPubMedPubMedCentral
92.
Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ (2015) Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 115:1447–1463. https://​doi.​org/​10.​1016/​j.​jand.​2015.​02.​031 CrossRefPubMed
93.
Aggarwal N, Singla A, Mathieu C et al (2018) Metformin extended-release versus immediate-release: an international, randomized, double-blind, head-to-head trial in pharmacotherapy-naïve patients with type 2 diabetes. Diabetes Obes Metab 20:463–467. https://​doi.​org/​10.​1111/​dom.​13104 CrossRefPubMed
94.
Garber AJ, Duncan TG, Goodman AM et al (1997) Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med 103:491–497CrossRefPubMed
95.
Inzucchi SE, Lipska KJ, Mayo H et al (2014) Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA 312:2668–2675. https://​doi.​org/​10.​1001/​jama.​2014.​15298 CrossRefPubMedPubMedCentral
96.
Lalau J-D, Kajbaf F, Bennis Y et al (2018) Metformin treatment in patients with type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care 41:547–553. https://​doi.​org/​10.​2337/​dc17-2231 CrossRefPubMed
97.
Imam TH (2017) Changes in metformin use in chronic kidney disease. Clin Kidney J 10:301–304. https://​doi.​org/​10.​1093/​ckj/​sfx017 CrossRefPubMedPubMedCentral
98.
UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRef
99.
Griffin SJ, Leaver JK, Irving GJ (2017) Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia 60:1620–1629. https://​doi.​org/​10.​1007/​s00125-017-4337-9 CrossRefPubMedPubMedCentral
100.
Maruthur NM, Tseng E, Hutfless S et al (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751. https://​doi.​org/​10.​7326/​M15-2650 CrossRefPubMed
101.
Aroda VR, Edelstein SL, Goldberg RB et al (2016) Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab 101:1754–1761. https://​doi.​org/​10.​1210/​jc.​2015-3754 CrossRefPubMedPubMedCentral
102.
Zhang X-L, Zhu Q-Q, Chen Y-H et al (2018) Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc 7:e007165. https://​doi.​org/​10.​1161/​JAHA.​117.​007165 CrossRefPubMedPubMedCentral
103.
Storgaard H, Gluud LL, Bennett C et al (2016) Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One 11:e0166125. https://​doi.​org/​10.​1371/​journal.​pone.​0166125 CrossRefPubMedPubMedCentral
104.
Li D, Wang T, Shen S et al (2017) Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 19:348–355. https://​doi.​org/​10.​1111/​dom.​12825 CrossRefPubMed
105.
Jabbour S, Seufert J, Scheen A et al (2018) Dapagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes Metab 20:620–628. https://​doi.​org/​10.​1111/​dom.​13124 CrossRefPubMed
106.
Tang H, Li D, Wang T et al (2016) Effect of sodium-glucose cotransporter 2 inhibitors on diabetic ketoacidosis among patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 39:e123–e124. https://​doi.​org/​10.​2337/​dc16-0885 CrossRefPubMed
107.
Thrasher J (2017) Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Med 130:S4–S17. https://​doi.​org/​10.​1016/​j.​amjmed.​2017.​04.​004 CrossRefPubMed
108.
Karagiannis T, Liakos A, Bekiari E et al (2015) Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonists for the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 17:1065–1074. https://​doi.​org/​10.​1111/​dom.​12541 CrossRefPubMed
109.
Zaccardi F, Htike ZZ, Webb DR et al (2016) Benefits and harms of once-weekly glucagon-like peptide-1 receptor agonist treatments: a systematic review and network meta-analysis. Ann Intern Med 164:102–113. https://​doi.​org/​10.​7326/​M15-1432 CrossRefPubMed
110.
Htike ZZ, Zaccardi F, Papamargaritis D et al (2017) Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab 19:524–536. https://​doi.​org/​10.​1111/​dom.​12849 CrossRefPubMed
111.
Sorli C, Harashima S-I, Tsoukas GM et al (2017) Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol 5:251–260. https://​doi.​org/​10.​1016/​S2213-8587(17)30013-X CrossRefPubMed
112.
Pratley RE, Aroda VR, Lingvay I et al (2018) Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol 6:275–286. https://​doi.​org/​10.​1016/​S2213-8587(18)30024-X CrossRefPubMed
113.
Dungan KM, Povedano ST, Forst T et al (2014) Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. Lancet 384:1349–1357. https://​doi.​org/​10.​1016/​S0140-6736(14)60976-4 CrossRefPubMed
114.
Buse JB, Nauck M, Forst T et al (2013) Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet 381:117–124. https://​doi.​org/​10.​1016/​S0140-6736(12)61267-7 CrossRefPubMed
115.
Buse JB, Rosenstock J, Sesti G et al (2009) Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374:39–47. https://​doi.​org/​10.​1016/​S0140-6736(09)60659-0 CrossRefPubMed
116.
Drucker DJ, Buse JB, Taylor K et al (2008) Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372:1240–1250. https://​doi.​org/​10.​1016/​S0140-6736(08)61206-4 CrossRefPubMed
117.
Andreadis P, Karagiannis T, Malandris K et al (2018) Semaglutide for type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes Metab 20:2255–2263. https://​doi.​org/​10.​1111/​dom.​13361 CrossRefPubMed
118.
Li Z, Zhang Y, Quan X et al (2016) Efficacy and acceptability of glycemic control of glucagon-like peptide-1 receptor agonists among type 2 diabetes: a systematic review and network meta-analysis. PLoS One 11:e0154206. https://​doi.​org/​10.​1371/​journal.​pone.​0154206 CrossRefPubMedPubMedCentral
119.
Storgaard H, Cold F, Gluud LL et al (2017) Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab 19:906–908. https://​doi.​org/​10.​1111/​dom.​12885 CrossRefPubMed
120.
Monami M, Nreu B, Scatena A et al (2017) Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): data from randomized controlled trials. Diabetes Obes Metab 19:1233–1241. https://​doi.​org/​10.​1111/​dom.​12926 CrossRefPubMed
121.
Esposito K, Chiodini P, Maiorino MI et al (2014) Glycaemic durability with dipeptidyl peptidase-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of long-term randomised controlled trials. BMJ Open 4:e005442. https://​doi.​org/​10.​1136/​bmjopen-2014-005442 CrossRefPubMedPubMedCentral
122.
Aroda VR, Henry RR, Han J et al (2012) Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: meta-analysis and systematic review. Clin Ther 34:1247–1258.e22. https://​doi.​org/​10.​1016/​j.​clinthera.​2012.​04.​013 CrossRefPubMed
123.
Wu S, Chai S, Yang J et al (2017) Gastrointestinal adverse events of dipeptidyl peptidase 4 inhibitors in type 2 diabetes: a systematic review and network meta-analysis. Clin Ther 39:1780–1789.e33. https://​doi.​org/​10.​1016/​j.​clinthera.​2017.​07.​036 CrossRefPubMed
124.
Salvo F, Moore N, Arnaud M et al (2016) Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis. BMJ 353:i2231. https://​doi.​org/​10.​1136/​bmj.​i2231 CrossRefPubMedPubMedCentral
125.
Tkáč I, Raz I (2017) Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 40:284–286. https://​doi.​org/​10.​2337/​dc15-1707 CrossRefPubMed
126.
Mascolo A, Rafaniello C, Sportiello L et al (2016) Dipeptidyl peptidase (DPP)-4 inhibitor-induced arthritis/arthralgia: a review of clinical cases. Drug Saf 39:401–407. https://​doi.​org/​10.​1007/​s40264-016-0399-8 CrossRefPubMed
127.
Nauck MA, Meier JJ, Cavender MA et al (2017) Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136:849–870. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​117.​028136 CrossRefPubMed
128.
Li L, Li S, Deng K et al (2016) Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ 352:i610CrossRefPubMedPubMedCentral
129.
Aronoff S, Rosenblatt S, Braithwaite S et al (2000) Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 23:1605–1611CrossRefPubMed
130.
Einhorn D, Rendell M, Rosenzweig J et al (2000) Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 22:1395–1409CrossRefPubMed
131.
Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118. https://​doi.​org/​10.​1056/​NEJMra041001 CrossRefPubMed
132.
Kernan WN, Viscoli CM, Furie KL et al (2016) Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 374:1321–1331. https://​doi.​org/​10.​1056/​NEJMoa1506930 CrossRefPubMedPubMedCentral
133.
Hanefeld M, Marx N, Pfützner A et al (2007) Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity C-reactive protein: the PIOSTAT Study. J Am Coll Cardiol 49:290–297. https://​doi.​org/​10.​1016/​j.​jacc.​2006.​08.​054 CrossRefPubMed
134.
Saremi A, Schwenke DC, Buchanan TA et al (2013) Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol 33:393–399. https://​doi.​org/​10.​1161/​ATVBAHA.​112.​300346 CrossRefPubMed
135.
Nissen SE, Nicholls SJ, Wolski K et al (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299:1561–1573. https://​doi.​org/​10.​1001/​jama.​299.​13.​1561 CrossRefPubMed
136.
Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289. https://​doi.​org/​10.​1016/​S0140-6736(05)67528-9 CrossRefPubMed
137.
Bach RG, Brooks MM, Lombardero M et al (2013) Rosiglitazone and outcomes for patients with diabetes mellitus and coronary artery disease in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation 128:785–794. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​112.​000678 CrossRefPubMed
138.
Mahaffey KW, Hafley G, Dickerson S et al (2013) Results of a reevaluation of cardiovascular outcomes in the RECORD trial. Am Heart J 166:240–249.e1. https://​doi.​org/​10.​1016/​j.​ahj.​2013.​05.​004 CrossRefPubMed
139.
Cusi K, Orsak B, Bril F et al (2016) Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 165:305–315. https://​doi.​org/​10.​7326/​M15-1774 CrossRefPubMed
140.
Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443. https://​doi.​org/​10.​1056/​NEJMoa066224 CrossRefPubMed
141.
Home PD, Pocock SJ, Beck-Nielsen H et al (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet Lond Engl 373:2125–2135. https://​doi.​org/​10.​1016/​S0140-6736(09)60953-3 CrossRef
142.
Hanefeld M, Brunetti P, Schernthaner GH et al (2004) One-year glycemic control with a sulfonylurea plus pioglitazone versus a sulfonylurea plus metformin in patients with type 2 diabetes. Diabetes Care 27:141–147. https://​doi.​org/​10.​2337/​diacare.​27.​1.​141 CrossRefPubMed
143.
Viscoli CM, Inzucchi SE, Young LH et al (2017) Pioglitazone and risk for bone fracture: safety data from a randomized clinical trial. J Clin Endocrinol Metab 102:914–922. https://​doi.​org/​10.​1210/​jc.​2016-3237 CrossRefPubMed
144.
Kahn SE, Zinman B, Lachin JM et al (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 31:845–851. https://​doi.​org/​10.​2337/​dc07-2270 CrossRefPubMed
145.
Lewis JD, Habel LA, Quesenberry CP et al (2015) Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA 314:265–277. https://​doi.​org/​10.​1001/​jama.​2015.​7996 CrossRefPubMed
146.
Hirst JA, Farmer AJ, Dyar A et al (2013) Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia 56:973–984. https://​doi.​org/​10.​1007/​s00125-013-2856-6 CrossRefPubMedPubMedCentral
147.
UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRef
148.
ADVANCE Collaborative Group, Patel A, MacMahon S et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572. https://​doi.​org/​10.​1056/​NEJMoa0802987 CrossRef
149.
Monami M, Dicembrini I, Kundisova L et al (2014) A meta-analysis of the hypoglycaemic risk in randomized controlled trials with sulphonylureas in patients with type 2 diabetes. Diabetes Obes Metab 16:833–840. https://​doi.​org/​10.​1111/​dom.​12287 CrossRefPubMed
150.
Del Prato S, Camisasca R, Wilson C, Fleck P (2014) Durability of the efficacy and safety of alogliptin compared with glipizide in type 2 diabetes mellitus: a 2-year study. Diabetes Obes Metab 16:1239–1246. https://​doi.​org/​10.​1111/​dom.​12377 CrossRefPubMed
151.
Mishriky BM, Cummings DM, Tanenberg RJ (2015) The efficacy and safety of DPP4 inhibitors compared to sulfonylureas as add-on therapy to metformin in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 109:378–388. https://​doi.​org/​10.​1016/​j.​diabres.​2015.​05.​025 CrossRefPubMed
152.
Khunti K, Chatterjee S, Gerstein HC et al (2018) Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol. https://​doi.​org/​10.​1016/​S2213-8587(18)30025-1
153.
Gangji AS, Cukierman T, Gerstein HC et al (2007) A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care 30:389–394. https://​doi.​org/​10.​2337/​dc06-1789 CrossRefPubMed
154.
Chan SP, Colagiuri S (2015) Systematic review and meta-analysis of the efficacy and hypoglycemic safety of gliclazide versus other insulinotropic agents. Diabetes Res Clin Pract 110:75–81. https://​doi.​org/​10.​1016/​j.​diabres.​2015.​07.​002 CrossRefPubMed
155.
Holman RR, Paul SK, Bethel MA et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589. https://​doi.​org/​10.​1056/​NEJMoa0806470 CrossRefPubMed
156.
Erpeldinger S, Rehman MB, Berkhout C et al (2016) Efficacy and safety of insulin in type 2 diabetes: meta-analysis of randomised controlled trials. BMC Endocr Disord 16:39. https://​doi.​org/​10.​1186/​s12902-016-0120-z CrossRefPubMedPubMedCentral
157.
Owens DR, Traylor L, Mullins P, Landgraf W (2017) Patient-level meta-analysis of efficacy and hypoglycaemia in people with type 2 diabetes initiating insulin glargine 100U/mL or neutral protamine Hagedorn insulin analysed according to concomitant oral antidiabetes therapy. Diabetes Res Clin Pract 124:57–65. https://​doi.​org/​10.​1016/​j.​diabres.​2016.​10.​022 CrossRefPubMed
158.
Goldman J, Kapitza C, Pettus J, Heise T (2017) Understanding how pharmacokinetic and pharmacodynamic differences of basal analog insulins influence clinical practice. Curr Med Res Opin 33:1821–1831. https://​doi.​org/​10.​1080/​03007995.​2017.​1335192 CrossRefPubMed
159.
Freemantle N, Chou E, Frois C et al (2016) Safety and efficacy of insulin glargine 300 u/mL compared with other basal insulin therapies in patients with type 2 diabetes mellitus: a network meta-analysis. BMJ Open 6:e009421. https://​doi.​org/​10.​1136/​bmjopen-2015-009421 CrossRefPubMedPubMedCentral
160.
Russell-Jones D, Gall M-A, Niemeyer M et al (2015) Insulin degludec results in lower rates of nocturnal hypoglycaemia and fasting plasma glucose vs. insulin glargine: a meta-analysis of seven clinical trials. Nutr Metab Cardiovasc Dis 25:898–905. https://​doi.​org/​10.​1016/​j.​numecd.​2015.​06.​005 CrossRefPubMed
161.
Lipska KJ, Parker MM, Moffet HH et al (2018) Association of initiation of basal insulin analogs vs neutral protamine hagedorn insulin with hypoglycemia-related emergency department visits or hospital admissions and with glycemic control in patients with type 2 diabetes. JAMA 320:53–62. https://​doi.​org/​10.​1001/​jama.​2018.​7993 CrossRefPubMedPubMedCentral
162.
Marso SP, McGuire DK, Zinman B et al (2017) Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377:723–732. https://​doi.​org/​10.​1056/​NEJMoa1615692 CrossRefPubMedPubMedCentral
163.
Rosenstock J, Hollander P, Bhargava A et al (2015) Similar efficacy and safety of LY2963016 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (the ELEMENT 2 study). Diabetes Obes Metab 17:734–741. https://​doi.​org/​10.​1111/​dom.​12482 CrossRefPubMed
164.
ORIGIN Trial Investigators, Gerstein HC, Bosch J et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367:319–328. https://​doi.​org/​10.​1056/​NEJMoa1203858 CrossRef
165.
Riddle MC, Yki-Järvinen H, Bolli GB et al (2015) One-year sustained glycaemic control and less hypoglycaemia with new insulin glargine 300 U/ml compared with 100 U/ml in people with type 2 diabetes using basal plus meal-time insulin: the EDITION 1 12-month randomized trial, including 6-month extension. Diabetes Obes Metab 17:835–842. https://​doi.​org/​10.​1111/​dom.​12472 CrossRefPubMedPubMedCentral
166.
Yki-Järvinen H, Bergenstal R, Ziemen M et al (2014) New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 2 diabetes using oral agents and basal insulin: glucose control and hypoglycemia in a 6-month randomized controlled trial (EDITION 2). Diabetes Care 37:3235–3243. https://​doi.​org/​10.​2337/​dc14-0990 CrossRefPubMed
167.
Riddle MC, Bolli GB, Ziemen M et al (2014) New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 2 diabetes using basal and mealtime insulin: glucose control and hypoglycemia in a 6-month randomized controlled trial (EDITION 1). Diabetes Care 37:2755–2762. https://​doi.​org/​10.​2337/​dc14-0991 CrossRefPubMed
168.
Khunti K, Damci T, Husemoen LL et al (2017) Exploring the characteristics of suboptimally controlled patients after 24 weeks of basal insulin treatment: an individualized approach to intensification. Diabetes Res Clin Pract 123:209–217. https://​doi.​org/​10.​1016/​j.​diabres.​2016.​11.​028 CrossRefPubMed
169.
Jensen MD, Ryan DH, Apovian CM et al (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and The Obesity Society. J Am Coll Cardiol 63:2985–3023. https://​doi.​org/​10.​1016/​j.​jacc.​2013.​11.​004 CrossRefPubMed
170.
Garvey WT, Mechanick JI, Brett EM et al (2016) American Association of Clinical Endocrinologists and American College of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 22(Suppl 3):1–203. https://​doi.​org/​10.​4158/​EP161365.​GL CrossRefPubMed
171.
Apovian CM, Aronne LJ, Bessesen DH et al (2015) Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100:342–362. https://​doi.​org/​10.​1210/​jc.​2014-3415 CrossRefPubMed
172.
Moyer VA, U.S. Preventive Services Task Force (2012) Screening for and management of obesity in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157:373–378. https://​doi.​org/​10.​7326/​0003-4819-157-5-201209040-00475 CrossRefPubMed
173.
Gaal LV, Dirinck E (2016) Pharmacological approaches in the treatment and maintenance of weight loss. Diabetes Care 39:S260–S267. https://​doi.​org/​10.​2337/​dcS15-3016 CrossRefPubMed
174.
Khera R, Pandey A, Chandar AK et al (2018) Effects of weight-loss medications on cardiometabolic risk profiles: a systematic review and network meta-analysis. Gastroenterology 154:1309–1319.e7. https://​doi.​org/​10.​1053/​j.​gastro.​2017.​12.​024 CrossRefPubMed
175.
Davies MJ, Bergenstal R, Bode B et al (2015) Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 314:687–699. https://​doi.​org/​10.​1001/​jama.​2015.​9676 CrossRefPubMed
176.
Schauer PR, Bhatt DL, Kirwan JP et al (2014) Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 370:2002–2013. https://​doi.​org/​10.​1056/​NEJMoa1401329 CrossRefPubMedPubMedCentral
177.
Schauer PR, Bhatt DL, Kirwan JP et al (2017) Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med 376:641–651. https://​doi.​org/​10.​1056/​NEJMoa1600869 CrossRefPubMedPubMedCentral
178.
Ikramuddin S, Korner J, Lee W-J et al (2018) Lifestyle intervention and medical management with vs without roux-en-y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA 319:266–278. https://​doi.​org/​10.​1001/​jama.​2017.​20813 CrossRefPubMedPubMedCentral
179.
Dixon JB, O’Brien PE, Playfair J et al (2008) Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299:316–323. https://​doi.​org/​10.​1001/​jama.​299.​3.​316 CrossRefPubMed
180.
Mingrone G, Panunzi S, De Gaetano A et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585. https://​doi.​org/​10.​1056/​NEJMoa1200111 CrossRefPubMed
181.
Sjöström L, Peltonen M, Jacobson P et al (2014) Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311:2297–2304. https://​doi.​org/​10.​1001/​jama.​2014.​5988 CrossRefPubMed
182.
Mingrone G, Panunzi S, De Gaetano A et al (2015) Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386:964–973. https://​doi.​org/​10.​1016/​S0140-6736(15)00075-6 CrossRefPubMed
183.
Rubino F, Nathan DM, Eckel RH et al (2016) Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care 39:861–877. https://​doi.​org/​10.​2337/​dc16-0236 CrossRefPubMed
184.
Maggard-Gibbons M, Maglione M, Livhits M et al (2013) Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309:2250–2261. https://​doi.​org/​10.​1001/​jama.​2013.​4851 CrossRefPubMed
185.
Mingrone G, Bornstein S, Le Roux CW (2018) Optimisation of follow-up after metabolic surgery. Lancet Diabetes Endocrinol 6:487–499. https://​doi.​org/​10.​1016/​S2213-8587(17)30434-5 CrossRefPubMed
186.
Conason A, Teixeira J, Hsu C-H et al (2013) Substance use following bariatric weight loss surgery. JAMA Surg 148:145–150. https://​doi.​org/​10.​1001/​2013.​jamasurg.​265 CrossRefPubMed
187.
Dawes AJ, Maggard-Gibbons M, Maher AR et al (2016) Mental health conditions among patients seeking and undergoing bariatric surgery: a meta-analysis. JAMA 315:150–163. https://​doi.​org/​10.​1001/​jama.​2015.​18118 CrossRefPubMed
188.
Mechanick JI, Kushner RF, Sugerman HJ, et al (2009) American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity (Silver Spring) 17 Suppl 1:S1-S70, v. https://​doi.​org/​10.​1038/​oby.​2009.​28
189.
Mechanick JI, Youdim A, Jones DB et al (2013) Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 21(Suppl 1):S1–S27. https://​doi.​org/​10.​1002/​oby.​20461 CrossRef
190.
Phung OJ, Sobieraj DM, Engel SS, Rajpathak SN (2014) Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes Metab 16:410–417. https://​doi.​org/​10.​1111/​dom.​12233 CrossRefPubMed
191.
Abdul-Ghani MA, Puckett C, Triplitt C et al (2015) Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for type 2 diabetes (EDICT): a randomized trial. Diabetes Obes Metab 17:268–275. https://​doi.​org/​10.​1111/​dom.​12417 CrossRefPubMedPubMedCentral
192.
Vijayakumar TM, Jayram J, Meghana Cheekireddy V et al (2017) Safety, efficacy, and bioavailability of fixed-dose combinations in type 2 diabetes mellitus: a systematic updated review. Curr Ther Res Clin Exp 84:4–9. https://​doi.​org/​10.​1016/​j.​curtheres.​2017.​01.​005 CrossRefPubMedPubMedCentral
193.
Mearns ES, Saulsberry WJ, White CM et al (2015) Efficacy and safety of antihyperglycaemic drug regimens added to metformin and sulphonylurea therapy in type 2 diabetes: a network meta-analysis. Diabet Med 32:1530–1540. https://​doi.​org/​10.​1111/​dme.​12837 CrossRefPubMed
194.
Henry RR, Murray AV, Marmolejo MH et al (2012) Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract 66:446–456. https://​doi.​org/​10.​1111/​j.​1742-1241.​2012.​02911.​x CrossRefPubMed
195.
Buse JB, Peters A, Russell-Jones D et al (2015) Is insulin the most effective injectable antihyperglycaemic therapy? Diabetes Obes Metab 17:145–151. https://​doi.​org/​10.​1111/​dom.​12402 CrossRefPubMed
196.
Vaccaro O, Masulli M, Nicolucci A et al (2017) Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol 5:887–897. https://​doi.​org/​10.​1016/​S2213-8587(17)30317-0 CrossRefPubMed
197.
Wang Z, Sun J, Han R et al (2018) Efficacy and safety of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors as monotherapy or add-on to metformin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes Metab 20:113–120. https://​doi.​org/​10.​1111/​dom.​13047 CrossRefPubMed
198.
Kawalec P, Mikrut A, Łopuch S (2014) The safety of dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-glucose cotransporter 2 (SGLT-2) inhibitors added to metformin background therapy in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab Res Rev 30:269–283CrossRefPubMed
199.
Leiter LA, Yoon K-H, Arias P et al (2015) Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care 38:355–364. https://​doi.​org/​10.​2337/​dc13-2762 CrossRefPubMed
200.
Del Prato S, Nauck M, Durán-Garcia S et al (2015) Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes Metab 17:581–590. https://​doi.​org/​10.​1111/​dom.​12459 CrossRefPubMed
201.
Ridderstråle M, Andersen KR, Zeller C et al (2014) Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2:691–700. https://​doi.​org/​10.​1016/​S2213-8587(14)70120-2 CrossRefPubMed
202.
Zhang Y, Hong J, Chi J et al (2014) Head-to-head comparison of dipeptidyl peptidase-IV inhibitors and sulfonylureas—a meta-analysis from randomized clinical trials. Diabetes Metab Res Rev 30:241–256. https://​doi.​org/​10.​1002/​dmrr.​2482 CrossRefPubMed
203.
Foroutan N, Muratov S, Levine M (2016) Safety and efficacy of dipeptidyl peptidase-4 inhibitors vs sulfonylurea in metformin-based combination therapy for type 2 diabetes mellitus: systematic review and meta-analysis. Clin Invest Med Med Clin Exp 39:E48–E62CrossRef
204.
Chen K, Kang D, Yu M et al (2018) Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: a meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 20:1029–1033. https://​doi.​org/​10.​1111/​dom.​13147 CrossRefPubMed
205.
Zaccardi F, Dhalwani NN, Dales J et al (2018) Comparison of glucose-lowering agents after dual therapy failure in type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes Metab 20:985–997. https://​doi.​org/​10.​1111/​dom.​13185 CrossRefPubMed
206.
Downes MJ, Bettington EK, Gunton JE, Turkstra E (2015) Triple therapy in type 2 diabetes; a systematic review and network meta-analysis. PeerJ 3:e1461. https://​doi.​org/​10.​7717/​peerj.​1461 CrossRefPubMedPubMedCentral
207.
Lee CMY, Woodward M, Colagiuri S (2016) Triple therapy combinations for the treatment of type 2 diabetes—a network meta-analysis. Diabetes Res Clin Pract 116:149–158. https://​doi.​org/​10.​1016/​j.​diabres.​2016.​04.​037 CrossRefPubMed
208.
Lukashevich V, Del Prato S, Araga M, Kothny W (2014) Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes Metab 16:403–409. https://​doi.​org/​10.​1111/​dom.​12229 CrossRefPubMed
209.
Hong AR, Lee J, Ku EJ et al (2015) Comparison of vildagliptin as an add-on therapy and sulfonylurea dose-increasing therapy in patients with inadequately controlled type 2 diabetes using metformin and sulfonylurea (VISUAL study): a randomized trial. Diabetes Res Clin Pract 109:141–148. https://​doi.​org/​10.​1016/​j.​diabres.​2015.​04.​019 CrossRefPubMed
210.
Moses RG, Kalra S, Brook D et al (2014) A randomized controlled trial of the efficacy and safety of saxagliptin as add-on therapy in patients with type 2 diabetes and inadequate glycaemic control on metformin plus a sulphonylurea. Diabetes Obes Metab 16:443–450. https://​doi.​org/​10.​1111/​dom.​12234 CrossRefPubMed
211.
Moses RG, Round E, Shentu Y et al (2016) A randomized clinical trial evaluating the safety and efficacy of sitagliptin added to the combination of sulfonylurea and metformin in patients with type 2 diabetes mellitus and inadequate glycemic control. J Diabetes 8:701–711. https://​doi.​org/​10.​1111/​1753-0407.​12351 CrossRefPubMed
212.
Singh S, Wright EE, Kwan AYM et al (2017) Glucagon-like peptide-1 receptor agonists compared with basal insulins for the treatment of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes Metab 19:228–238. https://​doi.​org/​10.​1111/​dom.​12805 CrossRefPubMed
213.
Levin PA, Nguyen H, Wittbrodt ET, Kim SC (2017) Glucagon-like peptide-1 receptor agonists: a systematic review of comparative effectiveness research. Diabetes Metab Syndr Obes Targets Ther 10:123–139. https://​doi.​org/​10.​2147/​DMSO.​S130834 CrossRef
214.
Abd El Aziz MS, Kahle M, Meier JJ, Nauck MA (2017) A meta-analysis comparing clinical effects of short- or long-acting GLP-1 receptor agonists versus insulin treatment from head-to-head studies in type 2 diabetic patients. Diabetes Obes Metab 19:216–227. https://​doi.​org/​10.​1111/​dom.​12804 CrossRefPubMed
215.
Eng C, Kramer CK, Zinman B, Retnakaran R (2014) Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet 384:2228–2234. https://​doi.​org/​10.​1016/​S0140-6736(14)61335-0 CrossRefPubMed
216.
Aroda VR, Bailey TS, Cariou B et al (2016) Effect of adding insulin degludec to treatment in patients with type 2 diabetes inadequately controlled with metformin and liraglutide: a double-blind randomized controlled trial (BEGIN: ADD TO GLP-1 Study). Diabetes Obes Metab 18:663–670. https://​doi.​org/​10.​1111/​dom.​12661 CrossRefPubMedPubMedCentral
217.
Aschner P, Sethi B, Gomez-Peralta F et al (2015) Insulin glargine compared with premixed insulin for management of insulin-naïve type 2 diabetes patients uncontrolled on oral antidiabetic drugs: the open-label, randomized GALAPAGOS study. J Diabetes Complicat 29:838–845. https://​doi.​org/​10.​1016/​j.​jdiacomp.​2015.​04.​003 CrossRef
218.
Rosenstock J, Fonseca V, Schinzel S et al (2014) Reduced risk of hypoglycemia with once-daily glargine versus twice-daily NPH and number needed to harm with NPH to demonstrate the risk of one additional hypoglycemic event in type 2 diabetes: evidence from a long-term controlled trial. J Diabetes Complicat 28:742–749. https://​doi.​org/​10.​1016/​j.​jdiacomp.​2014.​04.​003 CrossRef
219.
Tang H, Cui W, Li D et al (2017) Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 19:142–147. https://​doi.​org/​10.​1111/​dom.​12785 CrossRefPubMed
220.
Rosenstock J, Jelaska A, Zeller C et al (2015) Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 17:936–948. https://​doi.​org/​10.​1111/​dom.​12503 CrossRefPubMedPubMedCentral
221.
Rosenstock J, Jelaska A, Frappin G et al (2014) Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 37:1815–1823. https://​doi.​org/​10.​2337/​dc13-3055 CrossRefPubMed
222.
Yang W, Cai X, Gao X et al (2017) Addition of dipeptidyl peptidase-4 inhibitors to insulin treatment in type 2 diabetes patients: a meta-analysis. J Diabetes Investig 9:813–821. https://​doi.​org/​10.​1111/​jdi.​12764
223.
Min SH, Yoon J-H, Hahn S, Cho YM (2017) Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis: SGLT2 or DPP4 inhibitor with insulin. Diabetes Metab Res Rev 33:e2818. https://​doi.​org/​10.​1002/​dmrr.​2818 CrossRef
224.
Wysham CH, Lin J, Kuritzky L (2017) Safety and efficacy of a glucagon-like peptide-1 receptor agonist added to basal insulin therapy versus basal insulin with or without a rapid-acting insulin in patients with type 2 diabetes: results of a meta-analysis. Postgrad Med 129:436–445. https://​doi.​org/​10.​1080/​00325481.​2017.​1297669 CrossRefPubMed
225.
Maiorino MI, Chiodini P, Bellastella G et al (2017) Insulin and glucagon-like peptide 1 receptor agonist combination therapy in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 40:614–624. https://​doi.​org/​10.​2337/​dc16-1957 CrossRefPubMed
226.
Gough SCL, Bode BW, Woo VC et al (2015) One-year efficacy and safety of a fixed combination of insulin degludec and liraglutide in patients with type 2 diabetes: results of a 26-week extension to a 26-week main trial. Diabetes Obes Metab 17:965–973. https://​doi.​org/​10.​1111/​dom.​12498 CrossRefPubMedPubMedCentral
227.
Rosenstock J, Aronson R, Grunberger G et al (2016) Benefits of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide, versus insulin glargine and lixisenatide monocomponents in type 2 diabetes inadequately controlled on oral agents: the LixiLan-O randomized trial. Diabetes Care 39:2026–2035. https://​doi.​org/​10.​2337/​dc16-0917 CrossRefPubMed
228.
Aroda VR, Rosenstock J, Wysham C et al (2016) Efficacy and safety of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the LixiLan-L randomized trial. Diabetes Care 39:1972–1980. https://​doi.​org/​10.​2337/​dc16-1495 CrossRefPubMed
229.
Garber AJ, Wahlen J, Wahl T et al (2006) Attainment of glycaemic goals in type 2 diabetes with once-, twice-, or thrice-daily dosing with biphasic insulin aspart 70/30 (the 1-2-3 study). Diabetes Obes Metab 8:58–66. https://​doi.​org/​10.​1111/​j.​1463-1326.​2005.​00563.​x CrossRefPubMed
230.
Linjawi S, Lee B-W, Tabak Ö et al (2018) A 32-week randomized comparison of stepwise insulin intensification of biphasic insulin aspart (BIAsp 30) versus basal-bolus therapy in insulin-naïve patients with type 2 diabetes. Diabetes Ther 9:1–11. https://​doi.​org/​10.​1007/​s13300-017-0334-8 CrossRefPubMed
231.
Raccah D, Huet D, Dib A et al (2017) Review of basal-plus insulin regimen options for simpler insulin intensification in people with type 2 diabetes mellitus. Diabet Med J Br Diabet Assoc 34:1193–1204. https://​doi.​org/​10.​1111/​dme.​13390 CrossRef
232.
Rodbard HW, Visco VE, Andersen H et al (2014) Treatment intensification with stepwise addition of prandial insulin aspart boluses compared with full basal-bolus therapy (FullSTEP Study): a randomised, treat-to-target clinical trial. Lancet Diabetes Endocrinol 2:30–37. https://​doi.​org/​10.​1016/​S2213-8587(13)70090-1 CrossRefPubMed
233.
Giugliano D, Chiodini P, Maiorino MI et al (2016) Intensification of insulin therapy with basal-bolus or premixed insulin regimens in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Endocrine 51:417–428. https://​doi.​org/​10.​1007/​s12020-015-0718-3 CrossRefPubMed
234.
Wang C, Mamza J, Idris I (2015) Biphasic vs basal bolus insulin regimen in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabet Med 32:585–594. https://​doi.​org/​10.​1111/​dme.​12694
235.
Anyanwagu U, Mamza J, Gordon J et al (2017) Premixed vs basal-bolus insulin regimen in type 2 diabetes: comparison of clinical outcomes from randomized controlled trials and real-world data. Diabet Med 34:1728–1736. https://​doi.​org/​10.​1111/​dme.​13518
236.
Aronson R, Reznik Y, Conget I et al (2016) Sustained efficacy of insulin pump therapy compared with multiple daily injections in type 2 diabetes: 12-month data from the OpT2mise randomized trial. Diabetes Obes Metab 18:500–507. https://​doi.​org/​10.​1111/​dom.​12642 CrossRefPubMedPubMedCentral
237.
Kelly S, Martin S, Kuhn I et al (2016) Barriers and facilitators to the uptake and maintenance of healthy behaviours by people at mid-life: a rapid systematic review. PLoS One 11:e0145074. https://​doi.​org/​10.​1371/​journal.​pone.​0145074 CrossRefPubMedPubMedCentral
238.
Gee PM, Greenwood DA, Paterniti DA et al (2015) The eHealth enhanced chronic care model: a theory derivation approach. J Med Internet Res 17:e86. https://​doi.​org/​10.​2196/​jmir.​4067 CrossRefPubMedPubMedCentral
239.
Faruque LI, Wiebe N, Ehteshami-Afshar A et al (2017) Effect of telemedicine on glycated hemoglobin in diabetes: a systematic review and meta-analysis of randomized trials. CMAJ 189:E341–E364. https://​doi.​org/​10.​1503/​cmaj.​150885 CrossRefPubMedPubMedCentral
240.
Lee SWH, Chan CKY, Chua SS, Chaiyakunapruk N (2017) Comparative effectiveness of telemedicine strategies on type 2 diabetes management: a systematic review and network meta-analysis. Sci Rep 7:12680. https://​doi.​org/​10.​1038/​s41598-017-12987-z CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »