Skip to main content
Top

02-06-2018 | Healthcare costs | Article

Cost-Effectiveness Analysis of Canagliflozin 300 mg Versus Dapagliflozin 10 mg Added to Metformin in Patients with Type 2 Diabetes in the United States

Journal: Diabetes Therapy

Authors: Cheryl Neslusan, Anna Teschemaker, Michael Willis, Pierre Johansen, Lien Vo

Publisher: Springer Healthcare

Abstract

Introduction

Agents that inhibit sodium glucose co-transporter 2 (SGLT2), including canagliflozin and dapagliflozin, are approved in the United States for the treatment of adults with type 2 diabetes mellitus (T2DM). SGLT2 inhibition lowers blood glucose by increasing urinary glucose excretion, which leads to a mild osmotic diuresis and a net loss of calories that are associated with reductions in body weight and blood pressure. This analysis evaluated the cost-effectiveness of canagliflozin 300 mg versus dapagliflozin 10 mg in patients with T2DM inadequately controlled with metformin in the United States.

Methods

A 30-year cost-effectiveness analysis was performed using the validated Economic and Health Outcomes Model of T2DM (ECHO-T2DM) from the perspective of the third-party health care system in the United States. Patient demographics, biomarker values, and treatment effects for the ECHO-T2DM model were sourced primarily from a network meta-analysis (NMA) that included studies of canagliflozin and dapagliflozin in patients with T2DM on background metformin. Costs were derived from sources specific to the United States. Outcomes and costs were discounted at 3%. Sensitivity analyses that varied key model parameters were conducted.

Results

Canagliflozin 300 mg dominated dapagliflozin 10 mg as an add-on to metformin over 30 years, with an estimated cost offset of $13,991 and a quality-adjusted life-year gain of 0.08 versus dapagliflozin 10 mg. Results were driven by the better HbA1c lowering achieved with canagliflozin, which translated to less need for insulin rescue therapy. Findings from sensitivity analyses were consistent with the base case.

Conclusion

These results suggest that canagliflozin 300 mg is likely to provide better health outcomes at a lower overall cost than dapagliflozin 10 mg in patients with T2DM inadequately controlled with metformin from the perspective of the United States health care system.

Funding

Janssen Scientific Affairs, LLC and Janssen Global Services, LLC.
Literature
1.
Centers for Disease Control and Prevention. National chronic kidney disease fact sheet, 2014. Available from: https://​www.​cdc.​gov/​diabetes/​pubs/​pdf/​kidney_​factsheet.​pdf. Accessed Dec 4, 2017.
2.
DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.CrossRefPubMedPubMedCentral
3.
DeFronzo RA. Current issues in the treatment of type 2 diabetes. Overview of newer agents: where treatment is going. Am J Med. 2010;123:S38–48.CrossRefPubMed
4.
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:77–82.CrossRef
5.
Stratton IM, Adler AI, Neil HAW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.CrossRefPubMedPubMedCentral
6.
American Diabetes Association. Standards of medical care in diabetes—2017. Diabetes Care. 2017;40:S1–135.
7.
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.CrossRefPubMed
8.
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocr Pract. 2017;23:207–38.CrossRefPubMed
9.
Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015;38:2344–53.CrossRefPubMed
10.
Rosenthal N, Meininger G, Ways K, et al. Canagliflozin: a sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. Ann NY Acad Sci. 2015;1358:28–43.CrossRefPubMed
11.
Anderson SL. Dapagliflozin efficacy and safety: a perspective review. Ther Adv Drug Saf. 2014;5:242–54.CrossRefPubMedPubMedCentral
12.
Sha S, Polidori D, Farrell K, et al. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study. Diabetes Obes Metab. 2015;17:188–97.CrossRefPubMed
13.
Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36:2154–61.CrossRefPubMedPubMedCentral
14.
Pacou M, Taieb V, Abrams KR, et al. Bayesian network meta-analysis to assess relative efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus (T2DM) inadequately controlled with metformin. In: Poster presented at the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 16th Annual European Congress; November 2–6 2013; Dublin, Ireland.
15.
Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–94.CrossRefPubMed
16.
Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6:e009417.CrossRefPubMedPubMedCentral
17.
Schubert A, Buchholt AT, El Khoury AC, Kamal A, Taieb V. Evaluating the costs of glycemic response with canagliflozin versus dapagliflozin and empagliflozin as add-on to metformin in patients with type 2 diabetes mellitus in the United Arab Emirates. Curr Med Res Opin. 2017;33:1155–63.CrossRefPubMed
18.
Farahani P. A perspective on principles of comparative cost-effectiveness studies for pharmacotherapy of chronic diseases. Clin Diabetes. 2012;30:54–60.CrossRef
19.
Palmer AJ, Clarke P, Gray A, et al. Computer modeling of diabetes and its complications: a report on the Fifth Mount Hood Challenge meeting. Value Health. 2013;16:670–85.
20.
American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care. 2004;27:2262–5.CrossRef
21.
Neslusan C, Teschemaker A, Johansen P, Willis M, Valencia-Mendoza A, Puig A. Cost-effectiveness of canagliflozin versus sitagliptin as add-on to metformin in patients with type 2 diabetes mellitus in Mexico. Value Health Reg Issues. 2015;8:8–19.CrossRef
22.
Sabale U, Ekman M, Granstrom O, Bergenheim K, McEwan P. Cost-effectiveness of dapagliflozin (Forxiga®) added to metformin compared with sulfonylurea added to metformin in type 2 diabetes in the Nordic countries. Prim Care Diabetes. 2015;9:39–47.CrossRefPubMed
23.
Sabapathy S, Neslusan C, Yoong K, Teschemaker A, Johansen P, Willis M. Cost-effectiveness of canagliflozin versus sitagliptin when added to metformin and sulfonylurea in type 2 diabetes in Canada. J Popul Ther Clin Pharmacol. 2016;23:e151–68.PubMed
24.
Charokopou M, McEwan P, Lister S, et al. Cost-effectiveness of dapagliflozin versus DPP-4 inhibitors as an add-on to metformin in the treatment of type 2 diabetes mellitus from a UK healthcare system perspective. BMC Health Serv Res. 2015;15:496.CrossRefPubMedPubMedCentral
25.
Charokopou M, McEwan P, Lister S, et al. The cost-effectiveness of dapagliflozin versus sulfonylurea as an add-on to metformin in the treatment of type 2 diabetes mellitus. Diabet Med. 2015;32:890–8.CrossRefPubMed
26.
Tzanetakos C, Tentolouris N, Kourlaba G, Maniadakis N. Cost-effectiveness of dapagliflozin as add-on to metformin for the treatment of type 2 diabetes mellitus in Greece. Clin Drug Investig. 2016;36:649–59.CrossRefPubMed
27.
Shao H, Zhai S, Zou D, et al. Cost-effectiveness analysis of dapagliflozin versus glimepiride as monotherapy in a Chinese population with type 2 diabetes mellitus. Curr Med Res Opin. 2017;33:359–69.CrossRefPubMed
28.
Gu S, Mu Y, Zhai S, Zeng Y, Zhen X, Dong H. Cost-effectiveness of dapagliflozin versus acarbose as a monotherapy in type 2 diabetes in China. PLoS One. 2016;11:e0165629.CrossRefPubMedPubMedCentral
29.
Schroeder M, Johansen P, Thompson G, Neslusan C, Willis M. The cost-effectiveness of canagliflozin (CANA) versus dapagliflozin (DAPA) in patients with type 2 diabetes mellitus (T2DM) with inadequate control on metformin (MET) monotherapy in the United Kingdom. In: Poster presented at the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 17th Annual European Congress; November 8–12, 2014; Amsterdam, Netherlands.
30.
Nielsen AT, Pitcher A, Lovato E, et al. The cost-effectiveness evaluation of canagliflozin versus dapagliflozin in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy in Spain. In: Poster presented at the 20th Annual Meeting of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR); May 16–20, 2015; Philadelphia, Pennsylvania.
31.
Schroeder M, Johansen P, Willis M, Neslusan C. The cost-effectiveness of canagliflozin versus dapagliflozin and empagliflozin in patients with type 2 diabetes mellitus as monotherapy in the United Kingdom. In: Poster presented at the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 18th Annual European Congress; November 7–11, 2015; Milan, Italy.
32.
Johnston R, Uthman O, Cummins E, et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol Assess. 2017;21:1–218.CrossRefPubMedPubMedCentral
33.
Bacon T, Willis M, Johansen P, Neslusan C. Time until insulin initiation for canagliflozin (CANA) versus dapagliflozin (DAPA) in dual and triple therapy for type 2 diabetes mellitus (T2DM) in Ireland. In: Poster presented at the 20th Annual Meeting of the International Society for Pharmacoeconomics and Outcomes Research; May 16–20, 2015; Philadelphia, Pennsylvania.
34.
Willis M, Asseburg C, He J. Validation of economic and health outcomes simulation model of type 2 diabetes mellitus (ECHO-T2DM). J Med Econ. 2013;16:1007–21.CrossRefPubMed
35.
Willis M, Johansen P, Nilsson A, Asseburg C. Validation of the Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM). Pharmacoeconomics. 2017;35:375–96.CrossRefPubMed
36.
Brown JB, Russell A, Chan W, Pedula K, Aickin M. The global diabetes model: user friendly version 3.0. Diabetes Res Clin Pract. 2000;50(Suppl 3):S15–46.CrossRefPubMed
37.
Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM. II. Analysis of the health benefits and cost-effectiveness of treating NIDDM with the goal of normoglycemia. Diabetes Care. 1997;20:735–44.CrossRefPubMed
38.
Bagust A, Beale S. Modelling EuroQol health-related utility values for diabetic complications from CODE-2 data. Health Econ. 2005;14:217–30.CrossRefPubMed
39.
Hoerger TJ, Wittenborn JS, Segel JE, et al. A health policy model of CKD: 1. Model construction, assumptions, and validation of health consequences. Am J Kidney Dis. 2010;55:452–62.CrossRefPubMed
40.
Hoerger TJ, Wittenborn JS, Segel JE, et al. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. Am J Kidney Dis. 2010;55:463–73.CrossRefPubMed
41.
Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56:1925–33.CrossRefPubMed
42.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.
43.
Chaudhry ZW, Gannon MC, Nuttall FQ. Stability of body weight in type 2 diabetes. Diabetes Care. 2006;29:493–7.CrossRefPubMed
44.
Nicolle LE, Capuano G, Fung A, Usiskin K. Urinary tract infection in randomized phase III studies of canagliflozin, a sodium glucose co-transporter 2 inhibitor. Postgrad Med. 2014;126:7–17.CrossRefPubMed
45.
Nyirjesy P, Sobel JD, Fung A, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. Curr Med Res Opin. 2014;30:1109–19.CrossRefPubMed
46.
Evans M, Khunti K, Mamdani M, et al. Health-related quality of life associated with daytime and nocturnal hypoglycaemic events: a time trade-off survey in five countries. Health Qual Life Outcomes. 2013;11:90.CrossRefPubMedPubMedCentral
47.
Coyne KS, Sexton CC, Irwin DE, Kopp ZS, Kelleher CJ, Milsom I. The impact of overactive bladder, incontinence and other lower urinary tract symptoms on quality of life, work productivity, sexuality and emotional well-being in men and women: results from the EPIC study. BJU Int. 2008;101:1388–95.CrossRefPubMed
48.
Bristol-Myers Squibb Company. Package insert for FARXIGA® (dapagliflozin) tablets, for oral use. Princeton, NJ: Bristol-Myers Squibb Company; 2017.
49.
Janssen Pharmaceuticals. Package insert for INVOKANA® (canagliflozin) tablets, for oral use. Titusville, NJ: Janssen Pharmaceuticals; 2017.
50.
Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analyses. Panel on cost-effectiveness in health and medicine. JAMA. 1996;276:1339–41.CrossRefPubMed
51.
Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56:2582–92.CrossRefPubMedPubMedCentral
52.
Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–50.CrossRefPubMed
53.
Rosenstock J, Davies M, Home PD, Larsen J, Koenen C, Schernthaner G. A randomised, 52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia. 2008;51:408–16.CrossRefPubMedPubMedCentral
54.
Riddle MC, Vlajnic A, Zhou R, Rosenstock J. Baseline HbA1c predicts attainment of 7.0% HbA1c target with structured titration of insulin glargine in type 2 diabetes: a patient-level analysis of 12 studies. Diabetes Obes Metab. 2013;15:819–25.CrossRefPubMed
55.
Fonseca V, Gill J, Zhou R, Leahy J. An analysis of early insulin glargine added to metformin with or without sulfonylurea: impact on glycaemic control and hypoglycaemia. Diabetes Obes Metab. 2011;13:814–22.CrossRefPubMedPubMedCentral
56.
Blickle JF, Hancu N, Piletic M, et al. Insulin glargine provides greater improvements in glycaemic control vs. intensifying lifestyle management for people with type 2 diabetes treated with OADs and 7–8% A1c levels. The TULIP study. Diabetes Obes Metab. 2009;11:379–86.CrossRefPubMed
57.
Ward A, Alvarez P, Vo L, Martin S. Direct medical costs of complications of diabetes in the United States: estimates for event-year and annual state costs (USD 2012). J Med Econ. 2014;17:176–83.CrossRefPubMed
58.
AnalySource. Home page. https://​www.​analysource.​com.
59.
Currie CJ, Morgan CL, Poole CD, Sharplin P, Lammert M, McEwan P. Multivariate models of health-related utility and the fear of hypoglycaemia in people with diabetes. Curr Med Res Opin. 2006;22:1523–34.CrossRefPubMed
60.
Shingler S, Fordham B, Evans M, et al. Utilities for treatment-related adverse events in type 2 diabetes. J Med Econ. 2015;18:45–55.CrossRefPubMed
61.
Marseille E, Larson B, Kazi DS, Kahn JG, Rosen S. Thresholds for the cost-effectiveness of interventions: alternative approaches. Bull World Health Organ. 2015;93:118–24.CrossRefPubMed
62.
Mearns ES, Sobieraj DM, White CM, et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PLoS One. 2015;10:e0125879.CrossRefPubMedPubMedCentral
63.
Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34:2015–22.CrossRefPubMedPubMedCentral
64.
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRefPubMed
65.
European Medicines Agency. SGLT2 inhibitors: information on potential risk of toe amputation to be included in prescribing information. http://​www.​ema.​europa.​eu/​docs/​en_​GB/​document_​library/​Press_​release/​2017/​02/​WC500222191.​pdf.
66.
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefPubMed
67.
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL Study. Circulation. 2017;136:249–59.CrossRefPubMedPubMedCentral
68.
Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.CrossRefPubMed
69.
Clarke PM, Gray AM, Briggs A, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004;47:1747–59.CrossRefPubMed
70.
Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM. I. Model construction and assumptions. Diabetes Care. 1997;20:725–34.CrossRefPubMed
71.
Bagust A, Hopkinson PK, Maier W, Currie CJ. An economic model of the long-term health care burden of type II diabetes. Diabetologia. 2001;44:2140–55.

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »