Skip to main content
Top

05-18-2018 | Gestational diabetes | Review | Article

Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes

Journal: Reviews in Endocrine and Metabolic Disorders

Authors: Roseanne O. Yeung, Fady Hannah-Shmouni, Karen Niederhoffer, Mark A. Walker

Publisher: Springer US

Abstract

Diabetes mellitus is a heterogeneous group of conditions defined by resultant chronic hyperglycemia. Given the increasing prevalence of diabetes mellitus and the increasing understanding of genetic etiologies, we present a broad review of rare genetic forms of diabetes that have differing diagnostic and/or treatment implications from type 1 and type 2 diabetes. Advances in understanding the genotype-phenotype associations in these rare forms of diabetes offer clinically available examples of evolving precision medicine where defining the correct genetic etiology can radically alter treatment approaches. In this review, we focus on forms of monogenic diabetes, mitochondrial diabetes, and syndromic diabetes.
Literature
1.
International Diabetes Federation. IDF DIABETES ATLAS Eighth edition 2017 [Internet]. Idf. 2017. Available from: http://​www.​diabetesatlas.​org/​across-the-globe.​html
2.
American Diabetes Association AD. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care [Internet]. 2018 Jan 1 [cited 2018 Jan 5];41(Suppl 1):S13–27. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29222373.
3.
Thomas CC, Philipson LH. Update on Diabetes Classification. Med Clin North Am [Internet]. 2015 Jan 1 [cited 2018 Jan 2];99(1):1–16. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S002571251400141​2?​via%3Dihub
4.
Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia [Internet]. 2017 May 17 [cited 2018 Jan 10];60(5):769–77. Available from: http://​link.​springer.​com/​10.​1007/​s00125-017-4226-2 CrossRef
5.
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev [Internet]. 2016 [cited 2018 Jan 16];37(3):190–222. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27035557.CrossRef
6.
Grulich-Henn J, Klose D. Understanding childhood diabetes mellitus: new pathophysiological aspects. J Inherit Metab Dis [Internet]. 2017 Dec 15 [cited 2018 Jan 5]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29247329.
7.
Davis TM, Makepeace AE, Ellard S, Colclough K, Peters K, Hattersley A, et al. The prevalence of monogenic diabetes in Australia: the Fremantle Diabetes Study Phase II. Med J Aust [Internet]. 2017 Oct 16 [cited 2017 Dec 1];207(8):344–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29020906.CrossRef
8.
Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis C, Dolan LM, et al. Prevalence, Characteristics and Clinical Diagnosis of Maturity Onset Diabetes of the Young Due to Mutations in HNF1A, HNF4A, and Glucokinase: Results From the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab [Internet]. 2013 Oct [cited 2018 Jan 3];98(10):4055–62. Available from: https://​academic.​oup.​com/​jcem/​article-lookup/​doi/​10.​1210/​jc.​2013-1279 CrossRef
9.
Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al. Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care [Internet]. 2016 Nov [cited 2018 Jan 9];39(11):1879–88. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27271189.CrossRef
10.
Delvecchio M, Mozzillo E, Salzano G, Iafusco D, Frontino G, Patera PI, et al. Monogenic Diabetes Accounts for 6.3% of Cases Referred to 15 Italian Pediatric Diabetes Centers During 2007 to 2012. J Clin Endocrinol Metab [Internet]. 2017 Jun 1 [cited 2018 Jan 14];102(6):1826–34. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28323911.CrossRef
11.
Vaxillaire M, Froguel P. Monogenic diabetes: Implementation of translational genomic research towards precision medicine. J Diabetes [Internet]. 2016 Nov 1 [cited 2018 Jan 9];8(6):782–95. Available from: http://​doi.​wiley.​com/​10.​1111/​1753-0407.​12446 CrossRef
12.
Flannick J, Johansson S, Njølstad PR. Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol [Internet]. 2016 Jul 15 [cited 2018 Jan 13];12(7):394–406. Available from: http://​www.​nature.​com/​articles/​nrendo.​2016.​50 CrossRef
13.
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity onset diabetes of the young (MODY): how many cases are we missing? Diabetologia [Internet]. 2010 Dec 25 [cited 2018 Jan 3];53(12):2504–8. Available from: http://​link.​springer.​com/​10.​1007/​s00125-010-1799-4
14.
Althari S, Gloyn AL. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes. Rev Diabet Stud [Internet]. 2015 [cited 2018 Jan 14];12(3–4):330–48. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27111119.
15.
De Franco E, Flanagan SE, Houghton J AL, Allen HL, Mackay DJ, Temple IK, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet [Internet]. 2015 Sep 5 [cited 2018 Jan 13];386(9997):957–63. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26231457.
16.
Jacobs E, Tamayo T, Rathmann W. Epidemiologie des Diabetes in Deutschland. Dtsch Gesundheitsbericht - Diabetes. 2017;2017:10–21.
17.
Besser REJ, Flanagan SE, Mackay DGJ, Temple IK, Shepherd MH, Shields BM, et al. Prematurity and Genetic Testing for Neonatal Diabetes. Pediatrics [Internet]. 2016 Sep 1 [cited 2018 Apr 30];138(3):e20153926–e20153926. Available from: http://​pediatrics.​aappublications.​org/​cgi/​doi/​10.​1542/​peds.​2015-3926 CrossRef
18.
Taberner P, Flanagan SE, Mackay DJ, Ellard S, Taverna MJ, Ferraro M. Clinical and genetic features of Argentinian children with diabetes-onset before 12months of age: Successful transfer from insulin to oral sulfonylurea. Diabetes Res Clin Pract [Internet]. 2016 Jul [cited 2018 Jan 13];117:104–10. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27329029.CrossRef
19.
Thurber BW, Carmody D, Tadie EC, Pastore AN, Dickens JT, Wroblewski KE, et al. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia [Internet]. 2015 Jul [cited 2018 Jan 3];58(7):1430–5. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25877689.CrossRef
20.
Carmody D, Pastore AN, Landmeier KA, Letourneau LR, Martin R, Hwang JL, et al. Patients with KCNJ11-related diabetes frequently have neuropsychological impairments compared with sibling controls. Diabet Med [Internet]. 2016 Oct 1 [cited 2018 Jan 13];33(10):1380–6. Available from: http://​doi.​wiley.​com/​10.​1111/​dme.​13159CrossRef
21.
Beltrand J, Elie C, Busiah K, Fournier E, Boddaert N, Bahi-Buisson N, et al. Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations. Diabetes Care [Internet]. 2015 Nov [cited 2018 Jan 13];38(11):2033–41. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26438614.
22.
Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes [Internet]. 1975 Jan [cited 2018 Jan 7];24(1):44–53. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1122063.CrossRef
23.
Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med [Internet]. 2017 Dec 6 [cited 2018 Jan 14];15(1):213. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29207974.
24.
Unnikrishnan R, Shah VN, Mohan V. Challenges in diagnosis and management of diabetes in the young. Clin diabetes Endocrinol [Internet]. 2016 [cited 2018 Jan 15];2:18. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28702252.
25.
Byrne MM, Sturis J, Clément K, Vionnet N, Pueyo ME, Stoffel M, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest [Internet]. 1994 Mar [cited 2018 Jan 15];93(3):1120–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8132752.CrossRef
26.
Stride A, Shields B, Gill-Carey O, Chakera AJ, Colclough K, Ellard S, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia [Internet]. 2014 Jan 4 [cited 2018 Jan 3];57(1):54–6. Available from: http://​link.​springer.​com/​10.​1007/​s00125-013-3075-x CrossRef
27.
Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S, et al. Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. Diabetes Care [Internet]. 2015 Jul 1 [cited 2018 Jan 14];38(7):1383–92. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26106223.CrossRef
28.
Davis TM, Makepeace AE, Ellard S, Colclough K, Peters K, Hattersley A, et al. The prevalence of monogenic diabetes in Australia: the Fremantle diabetes study phase II. Med J Aust. 2017 Oct;207(8):344–7.CrossRef
29.
Carmody D, Naylor RN, Bell CD, Berry S, Montgomery JT, Tadie EC, et al. GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetol [Internet]. 2016 Oct 22 [cited 2018 Jan 3];53(5):703–8. Available from: http://​link.​springer.​com/​10.​1007/​s00592-016-0859-8 CrossRef
30.
Cuesta-Muñoz AL, Tuomi T, Cobo-Vuilleumier N, Koskela H, Odili S, Stride A, et al. Clinical heterogeneity in monogenic diabetes caused by mutations in the glucokinase gene (GCK-MODY). Diabetes Care [Internet]. 2010 Feb 1 [cited 2018 Jan 14];33(2):290–2. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19903754.CrossRef
31.
Yamagata K. Roles of HNF1α and HNF4α in Pancreatic β-Cells: Lessons from a Monogenic Form of Diabetes (MODY). Vitam Horm [Internet]. 2014 Jan 1 [cited 2018 Jan 15];95:407–23. Available from: http://​www.​sciencedirect.​com.​login.​ezproxy.​library.​ualberta.​ca/​science/​article/​pii/​B978012800174500​0168?​via%3Dihub#bb0465 CrossRef
32.
Bartoov-Shifman R, Hertz R, Wang H, Wollheim CB, Bar-Tana J, Walker MD. Activation of the Insulin Gene Promoter through a Direct Effect of Hepatocyte Nuclear Factor 4α. J Biol Chem [Internet]. 2002 Jul 19 [cited 2018 Jan 15];277(29):25914–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11994285.CrossRef
33.
Pearson ER. Recent advances in the genetics of diabetes. Prim Care Diabetes [Internet]. 2008 Jun 1 [cited 2018 Jan 16];2(2):67–72. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S175199180700183​0?​via%3Dihub CrossRef
34.
Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med [Internet]. 2010 Feb [cited 2018 Jan 16];27(2):157–61. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20546258.CrossRef
35.
Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia [Internet]. 2014 Mar 10 [cited 2018 Jan 16];57(3):480–4. Available from: http://​link.​springer.​com/​10.​1007/​s00125-013-3119-2
36.
McDonald TJ, Colclough K, Brown R, Shields B, Shepherd M, Bingley P, et al. Islet autoantibodies can discriminate maturity onset diabetes of the young (MODY) from Type 1 diabetes. Diabet Med [Internet]. 2011 Sep 1 [cited 2018 Jan 10];28(9):1028–33. Available from: http://​doi.​wiley.​com/​10.​1111/​j.​1464-5491.​2011.​03287.​x CrossRef
37.
Urbanová J, Rypáčková B, Procházková Z, Kučera P, Černá M, Anděl M, et al. Positivity for islet cell autoantibodies in patients with monogenic diabetes is associated with later diabetes onset and higher HbA 1c level. Diabet Med [Internet]. 2014 Apr 1 [cited 2018 Jan 10];31(4):466–71. Available from: http://​doi.​wiley.​com/​10.​1111/​dme.​12314 CrossRef
38.
Lebenthal Y, Fisch Shvalb N, Gozlan Y, Tenenbaum A, Tenenbaum-Rakover Y, Vaillant E, et al. The unique clinical spectrum of maturity onset diabetes of the young type 3. Diabetes Res Clin Pract [Internet]. 2018 Jan 1 [cited 2018 Jan 10];135:18–22. Available from: http://​www.​sciencedirect.​com.​login.​ezproxy.​library.​ualberta.​ca/​science/​article/​pii/​S016882271730029​3?​via%3Dihub CrossRef
39.
Pruhova S, Dusatkova P, Neumann D, Hollay E, Cinek O, Lebl J, et al. Two Cases of Diabetic Ketoacidosis in HNF1A-MODY Linked to Severe Dehydration. Diabetes Care [Internet]. 2013 Sep [cited 2018 Jan 16];36(9):2573–4. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23610083.CrossRef
40.
Remedi MS, Thomas M, Nichols CG, Marshall BA. Sulfonylurea challenge test in subjects diagnosed with type 1 diabetes mellitus. Pediatr Diabetes [Internet]. 2017 Dec [cited 2018 Jan 16];18(8):777–84. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28111849.CrossRef
41.
Shields BM, Shepherd M, Hudson M, McDonald TJ, Colclough K, Peters J, et al. Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients. Diabetes Care [Internet]. 2017 Aug 12 [cited 2018 Jan 16];40(8):1017–25. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28701371.
42.
Pinelli M, Acquaviva F, Barbetti F, Caredda E, Cocozza S, Delvecchio M, et al. Identification of Candidate Children for Maturity Onset Diabetes of the Young Type 2 (MODY2) Gene Testing: A Seven-Item Clinical Flowchart (7-iF). Folli F, editor. PLoS One [Internet]. 2013 Nov 11 [cited 2018 Jan 3];8(11):e79933. Available from: http://​dx.​plos.​org/​10.​1371/​journal.​pone.​0079933
43.
University of Exeter. MODY Probability Calculator|Providing information for patients and professionals on research and clinical care in genetic types of diabetes. [Internet]. [cited 2018 Jan 17]. Available from: http://​www.​diabetesgenes.​org/​content/​mody-probability-calculator
44.
Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diab Rep [Internet]. 2008 Jun [cited 2018 Jan 10];8(3):173–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18625112.CrossRef
45.
Schapira AH V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol [Internet]. 2008 Jan [cited 2018 Jan 10];7(1):97–109. Available from: http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S147444220770327​7 CrossRef
46.
Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol [Internet]. 2015 May [cited 2018 Jan 10];77(5):753–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25652200.CrossRef
47.
Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med [Internet]. 2015 Sep 11 [cited 2018 Jan 10];17(9):689–701. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25503498.
48.
Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol [Internet]. 2008 Jan [cited 2018 Jan 10];63(1):35–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17886296.CrossRef
49.
Choo-Kang ATW, Lynn S, Taylor GA, Daly ME, Sihota SS, Wardell TM, et al. Defining the importance of mitochondrial gene defects in maternally inherited diabetes by sequencing the entire mitochondrial genome. Diabetes [Internet]. 2002 Jul 1 [cited 2018 Feb 9];51(7):2317–20. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12086967.CrossRef
50.
Schaefer AM, Walker M, Turnbull DM, Taylor RW. Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol [Internet]. 2013 Oct 15 [cited 2018 Jan 10];379(1–2):2–11. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23769710.CrossRef
51.
Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol [Internet]. 2017 Feb 7 [cited 2018 Jan 10];13(2):92–104. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27716753.CrossRef
52.
DiMauro S, Hirano M. Mitochondrial DNA Deletion Syndromes [Internet]. GeneReviews®. University of Washington, Seattle; 1993 [Cited 2018 Jan 10]. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20301382.
53.
Manwaring N, Jones MM, Wang JJ, Rochtchina E, Howard C, Mitchell P, et al. Population prevalence of the MELAS A3243G mutation. Mitochondrion [Internet]. 2007 May [cited 2018 Jan 10];7(3):230–3. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17300999.
54.
Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature [Internet]. 1990 Dec 13 [cited 2018 Jan 10];348(6302):651–3. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​2102678.CrossRef
55.
Hirano M, Ricci E, Koenigsberger MR, Defendini R, Pavlakis SG, DeVivo DC, et al. Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord [Internet]. 1992 [cited 2018 Jan 10];2(2):125–35. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1422200.CrossRef
56.
Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology [Internet]. 2002 Nov 12 [cited 2018 Jan 10];59(9):1406–11. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12427892.
57.
Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi G Pietro, et al. The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol [Internet]. 2014 Mar 29 [cited 2018 Jan 10];261(3):504–10. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24375076.CrossRef
58.
Whittaker RG, Schaefer AM, McFarland R, Taylor RW, Walker M, Turnbull DM. Prevalence and progression of diabetes in mitochondrial disease. Diabetologia [Internet]. 2007 Sep 4 [cited 2018 Jan 10];50(10):2085–9. Available from: http://​link.​springer.​com/​10.​1007/​s00125-007-0779-9 CrossRef
59.
McFarland R, Chinnery PF, Blakely EL, Schaefer AM, Morris AAM, Foster SM, et al. Homoplasmy, heteroplasmy, and mitochondrial dystonia. Neurology [Internet]. 2007 Aug 28 [cited 2018 Jan 10];69(9):911–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17724295.
60.
Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain [Internet]. 1997 Oct [cited 2018 Jan 10];120 (Pt 10):1713–21. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9365365.
61.
Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care [Internet]. 2017 [cited 2018 Jan 11];40(Suppl 1):S4–5. Available from: http://​care.​diabetesjournals​.​org/​content/​diacare/​suppl/​2016/​12/​15/​40.​Supplement_​1.​DC1/​DC_​40_​S1_​final.​pdf
62.
American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care [Internet]. 2009 Jan 1 [cited 2018 Jan 10];32(Supplement_1):S62–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19118289.
63.
Nakamura S, Yoshinari M, Wakisaka M, Kodera H, Doi Y, Yoshizumi H, et al. Ketoacidosis accompanied by epileptic seizures in a patient with diabetes mellitus and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Diabetes Metab [Internet]. 2000 Nov [cited 2018 Jan 10];26(5):407–10. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11119021.
64.
Takamura T, Nagai Y, Torita M, Yamashita H, Kahara T, Koshino Y, et al. Ketosis-onset diabetes without islet-associated autoantibodies in a patient with MELAS. Diabetes Care [Internet]. 2000 Jul 1 [cited 2018 Jan 10];23(7):1018–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10895857.CrossRef
65.
Huang C-N, Jee S-H, Hwang J-J, Kuo Y-F, Chuang L-M. Autoimmune IDDM in a sporadic MELAS patient with mitochondrial tRNALeu(UUR) mutation. Clin Endocrinol (Oxf) [Internet]. 1998 Aug 1 [cited 2018 Jan 10];49(2):265–70. Available from: http://​doi.​wiley.​com/​10.​1046/​j.​1365-2265.​1998.​00455.​x
66.
Frederiksen AL, Jeppesen TD, Vissing J, Schwartz M, Kyvik KO, Schmitz O, et al. High Prevalence of Impaired Glucose Homeostasis and Myopathy in Asymptomatic and Oligosymptomatic 3243A>G Mitochondrial DNA Mutation-Positive Subjects. J Clin Endocrinol Metab [Internet]. 2009 Aug 1 [cited 2018 Jan 10];94(8):2872–9. Available from: https://​academic.​oup.​com/​jcem/​article-lookup/​doi/​10.​1210/​jc.​2009-0235 CrossRef
67.
de Laat P, Koene S, van den Heuvel LPWJ, Rodenburg RJT, Janssen MCH, Smeitink JAM. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A > G mutation. J Inherit Metab Dis [Internet]. 2012 Nov 9 [cited 2018 Jan 10];35(6):1059–69. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22403016.
68.
Ohkubo K, Yamano A, Nagashima M, Mori Y, Anzai K, Akehi Y, et al. Mitochondrial gene mutations in the tRNA(Leu(UUR)) region and diabetes: prevalence and clinical phenotypes in Japan. Clin Chem [Internet]. 2001 Sep [cited 2018 Jan 10];47(9):1641–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11514398.
69.
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med [Internet]. 2008 Apr [cited 2018 Jan 10];25(4):383–99. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18294221.CrossRef
70.
Kishimoto M, Hashiramoto M, Araki S, Ishida Y, Kazumi T, Kanda F, et al. Diabetes mellitus carrying a mutation in the mitochondrial tRNALeu(UUR) gene. Diabetologia [Internet]. 1995 Feb [cited 2018 Jan 10];38(2):193–200. Available from: http://​link.​springer.​com/​10.​1007/​BF00400094
71.
Guillausseau PJ, Dubois-Laforgue D, Massin P, Laloi-Michelin M, Bellanné-Chantelot C, Gin H, et al. Heterogeneity of diabetes phenotype in patients with 3243 bp mutation of mitochondrial DNA (Maternally Inherited Diabetes and Deafness or MIDD). Diabetes Metab [Internet]. 2004 Apr [cited 2018 Jan 10];30(2):181–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15223991.
72.
Maassen JA, ‘T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes [Internet]. 2004 Feb [cited 2018 Jan 10];53 Suppl 1:S103–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​14749274.CrossRef
73.
Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care [Internet]. 2011 May [cited 2018 Jan 10];34 Suppl 2(Suppl 2):S184–90. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21525453.
74.
Horvath R, Hudson G, Ferrari G, Fütterer N, Ahola S, Lamantea E, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gene. Brain [Internet]. 2006 Jul 1 [cited 2018 Jan 10];129(7):1674–84. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16621917.
75.
Pitceathly RDS, Smith C, Fratter C, Alston CL, He L, Craig K, et al. Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics. Brain [Internet]. 2012 Nov [cited 2018 Jan 10];135(11):3392–403. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23107649.CrossRef
76.
Austin SA, Vriesendorp FJ, Thandroyen FT, Hecht JT, Jones OT, Johns DR. Expanding the phenotype of the 8344 transfer RNAlysine mitochondrial DNA mutation. Neurology [Internet]. 1998 Nov 1 [cited 2018 Jan 10];51(5):1447–50. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9818878.
77.
Newman NJ, Lott MT, Wallace DC. The Clinical Characteristics of Pedigrees of Leber’s Hereditary Optic Neuropathy With the 11778 Mutation. Am J Ophthalmol [Internet]. 1991 Jun 1 [cited 2018 Jan 10];111(6):750–62. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S000293941476784​4 CrossRef
78.
Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain [Internet]. 2010 Mar [cited 2018 Jan 10];133(3):771–86. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20157015.
79.
Lonnqvist T, Paetau A, Valanne L, Pihko H. Recessive twinkle mutations cause severe epileptic encephalopathy. Brain [Internet]. 2009 Jun 1 [cited 2018 Jan 10];132(6):1553–62. Available from: https://​academic.​oup.​com/​brain/​article-lookup/​doi/​10.​1093/​brain/​awp045
80.
Reardon W, Ross RJ, Sweeney MG, Luxon LM, Pembrey ME, Harding AE, et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet (London, England) [Internet]. 1992 Dec 5 [cited 2018 Jan 10];340(8832):1376–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1360090.
81.
Kadowaki H, Tobe K, Mori Y, Sakura H, Sakuta R, Nonaka I, et al. Mitochondrial gene mutation and insulin-deficient type of diabetes mellitus. Lancet (London, England) [Internet]. 1993 Apr 3 [cited 2018 Jan 11];341(8849):893–4. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8096591.
82.
Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y, et al. A Subtype of Diabetes Mellitus Associated with a Mutation of Mitochondrial DNA. N Engl J Med [Internet]. 1994 Apr 7 [cited 2018 Jan 10];330(14):962–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8121460.CrossRef
83.
Lindroos MM, Majamaa K, Tura A, Mari A, Kalliokoski KK, Taittonen MT, et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes [Internet]. 2009 Mar [cited 2018 Jan 10];58(3):543–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19073775.
84.
Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol [Internet]. 2011 Sep 13 [cited 2018 Jan 10];8(2):92–103. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21912398.CrossRef
85.
El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Jahoor F, Scaglia F, et al. Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion [Internet]. 2014 Sep [cited 2018 Jan 10];18:63–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25086207.
86.
van Essen EHR, Roep BO, Hart LM’t, Jansen JJ, Van den Ouweland JMW, Lemkes HHPJ, et al. HLA-DQ polymorphism and degree of heteroplasmy of the A3243G mitochondrial DNA mutation in maternally inherited diabetes and deafness. Diabet Med [Internet]. 2000 Dec 1 [cited 2018 Jan 10];17(12):841–7. Available from: http://​doi.​wiley.​com/​10.​1046/​j.​1464-5491.​2000.​00379.​x CrossRef
87.
Isotani H, Fukumoto Y, Kawamura H, Furukawa K, Ohsawa N, Goto Y, et al. Hypoparathyroidism and insulin-dependent diabetes mellitus in a patient with Kearns-Sayre syndrome harbouring a mitochondrial DNA deletion. Clin Endocrinol (Oxf) [Internet]. 1996 Nov [cited 2018 Jan 10];45(5):637–41. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8977763.
88.
Ranganathan S, Ramasarma T. Inhibition of the biosynthesis of sterols by phenyl and phenolic compounds in rat liver. Biochem J [Internet]. 1973 Jul 15 [cited 2018 Jan 10];134(3):737–43. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​4749274.CrossRef
89.
Inoue T, Murakami N, Ayabe T, Oto Y, Nishino I, Goto Y-I, et al. Pyruvate Improved Insulin Secretion Status in a Mitochondrial Diabetes Mellitus Patient. J Clin Endocrinol Metab [Internet]. 2016 [cited 2018 Jan 10];101:1924–6. Available from: http://​dl.​yums.​ac.​ir/​bitstream/​Hannan/​77484/​1/​2016 Endocrine %2863%29.pdf.
90.
Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel-Guitton C, et al. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med [Internet]. 2017 Dec 27 [cited 2018 Jan 10];19(12). Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28749475.
91.
Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature [Internet]. 2014 Jun 21 [cited 2018 Jan 10];510(7506):542–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24847880.
92.
Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol [Internet]. 2009 Nov [cited 2018 Jan 10];11(6):414–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19891905.CrossRef
93.
DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism [Internet]. 2016 Feb [cited 2018 Jan 10];65(2):20–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26773926.
94.
Salpeter S, Greyber E, Pasternak G, Salpeter E. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. In: Salpeter S, editor. The Cochrane database of systematic reviews [internet]. Chichester, UK: John Wiley & Sons, ltd; 2003 [cited 2018 Jan 10]. p. CD002967. Available from. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12076461
95.
Guigas B, Detaille D, Chauvin C, Batandier C, De OLIVEIRA F, Fontaine E, et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J [Internet]. 2004 Sep 15 [cited 2018 Jan 10];382(3):877–84. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15175014.CrossRef
96.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet (London, England) [Internet]. 1998 Sep 12 [cited 2018 Jan 10];352(9131):854–65. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9742977.
97.
Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care [Internet]. 2002 Dec [cited 2018 Jan 10];25(12):2244–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12453968.CrossRef
98.
Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia [Internet]. 2017 Sep 2 [cited 2018 Jan 10];60(9):1586–93. Available from: http://​link.​springer.​com/​10.​1007/​s00125-017-4336-x
99.
Inzucchi SE. Is It Time to Change the Type 2 Diabetes Treatment Paradigm? No! Metformin Should Remain the Foundation Therapy for Type 2 Diabetes. Diabetes Care [Internet]. 2017 Aug 21 [cited 2018 Jan 10];40(8):1128–32. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28733378.CrossRef
100.
Hannah-Shmouni F, Sirrs SM, Mattman A. Metformin Therapy and Lactate Levels in Adult Patients with Melas and Diabetes Mellitus : Glucose Metabolism [Internet]. Endocrine Society’s 96th Annual Meeting and Expo, June. 2014 [cited 2018 Jan 11]. Available from: http://​press.​endocrine.​org/​doi/​abs/​10.​1210/​endo-meetings.​2014.​DGM.​9.​SAT-1040
101.
Hannah-Shmouni F, Sirrs SM, Mattman A. Metformin Therapy and Lactate Levels in Adult Patients with Melas and Diabetes Mellitus : Glucose Metabolism. Endocrine Society’s 96th Annual Meeting and Expo, June. 2014.
102.
Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in Patients With Type 2 Diabetes and Kidney Disease. JAMA [Internet]. 2014 Dec 24 [cited 2018 Jan 10];312(24):2668. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25536258.
103.
Hannah-Shmouni F, Sirrs S, Mezei MM, Waters PJ, Mattman A. Increased Prevalence of Hypertension in Young Adults with High Heteroplasmy Levels of the MELAS m.3243A>G Mutation. In: JIMD reports [Internet]. 2013 [cited 2018 Jan 10]. p. 17–23. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23846908.
104.
Hannah-Shmouni F, Al-Sarraf A, Frohlich J, Mezei MM, Sirrs S, Mattman A. Safety of statin therapy in patients with mitochondrial diseases. J Clin Lipidol [Internet]. 2013 Mar [cited 2018 Jan 10];7(2):182. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23415441.CrossRef
105.
Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes [Internet]. 2009 Sep [cited 2018 Jan 10];10:33–42. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19754616.
106.
Marshall BA, Permutt MA, Paciorkowski AR, Hoekel J, Karzon R, Wasson J, et al. Phenotypic characteristics of early Wolfram syndrome. Orphanet J Rare Dis [Internet]. 2013 Apr 27 [cited 2018 Jan 10];8(1):64. Available from: http://​ojrd.​biomedcentral.​com/​articles/​10.​1186/​1750-1172-8-64 CrossRef
107.
Rigoli L, Lombardo F, Di Bella C. Wolfram syndrome and WFS1 gene. Clin Genet [Internet]. 2011 Feb [cited 2018 Jan 10];79(2):103–17. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20738327.CrossRef
108.
Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet [Internet]. 1998 Oct 1 [cited 2018 Jan 10];20(2):143–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9771706.CrossRef
109.
Tranebjærg L, Barrett T, Rendtorff ND. WFS1-Related Disorders [Internet]. GeneReviews®. University of Washington, Seattle; 1993 [Cited 2018 Jan 10]. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20301750.
110.
Cano A, Molines L, Valero R, Simonin G, Paquis-Flucklinger V, Vialettes B, et al. Microvascular Diabetes Complications in Wolfram Syndrome (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness [DIDMOAD]): An age- and duration-matched comparison with common type 1 diabetes. Diabetes Care [Internet]. 2007 Sep 1 [cited 2018 Jan 10];30(9):2327–30. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17536072.CrossRef
111.
Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, et al. WFS1 Is a Novel Component of the Unfolded Protein Response and Maintains Homeostasis of the Endoplasmic Reticulum in Pancreatic β-Cells. J Biol Chem [Internet]. 2005 Nov 25 [cited 2018 Jan 10];280(47):39609–15. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16195229.CrossRef
112.
Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic β-cells. Hum Mol Genet [Internet]. 2006 May 15 [cited 2018 Jan 10];15(10):1600–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16571599.CrossRef
113.
Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, et al. -Cell Dysfunction Due to Increased ER Stress in a Stem Cell Model of Wolfram Syndrome. Diabetes [Internet]. 2014 Mar 1 [cited 2018 Jan 10];63(3):923–33. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24227685.CrossRef
114.
Sedman T, Rünkorg K, Krass M, Luuk H, Plaas M, Vasar E, et al. Exenatide Is an Effective Antihyperglycaemic Agent in a Mouse Model of Wolfram Syndrome 1. J Diabetes Res [Internet]. 2016 Mar 16 [cited 2018 Jan 10];2016:1–7. Available from: http://​www.​hindawi.​com/​journals/​jdr/​2016/​9239530/​ CrossRef
115.
Cunha DA, Ladrière L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, et al. Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB. Diabetes [Internet]. 2009 Dec [cited 2018 Feb 9];58(12):2851–62. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19720788.
116.
Urano F. Wolfram Syndrome: Diagnosis, Management, and Treatment. Curr Diab Rep [Internet]. 2016 Jan [cited 2018 Jan 10];16(1):6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26742931.
117.
Diaz GA, Banikazemi M, Oishi K, Desnick RJ, Gelb BD. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet [Internet]. 1999 Jul 1 [cited 2018 Jan 10];22(3):309–12. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10391223.CrossRef
118.
Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N, Neufeld EJ. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet [Internet]. 1999 Jul 1 [cited 2018 Jan 10];22(3):305–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10391222.CrossRef
119.
Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet [Internet]. 1999 Jul 1 [cited 2018 Jan 10];22(3):300–4. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10391221.CrossRef
120.
Ozdemir MA, Akcakus M, Kurtoglu S, Gunes T, Torun YA. TRMA syndrome (thiamine-responsive megaloblastic anemia): a case report and review of the literature. Pediatr Diabetes [Internet]. 2002 Dec [cited 2018 Jan 10];3(4):205–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15016149.CrossRef
121.
Oishi K, Diaz GA. Thiamine-Responsive Megaloblastic Anemia Syndrome [Internet]. GeneReviews®. University of Washington, Seattle; 1993 [Cited 2018 Jan 11]. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20301459.
122.
Ricketts C, Minton J, Samuel J, Ariyawansa I, Wales J, Lo I, et al. Thiamine-responsive megaloblastic anaemia syndrome: Long-term follow-up and mutation analysis of seven families. Acta Paediatr [Internet]. 2006 Jan 1 [cited 2018 Jan 10];95(1):99–104. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16373304.CrossRef
123.
Potter K, Wu J, Lauzon J, Ho J. Beta cell function and clinical course in three siblings with thiamine-responsive megaloblastic anemia (TRMA) treated with thiamine supplementation. J Pediatr Endocrinol Metab [Internet]. 2017 Jan 1 [cited 2018 Jan 10];30(2):241–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28076318.
124.
Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB, et al. New Alström Syndrome Phenotypes Based on the Evaluation of 182 Cases. Arch Intern Med [Internet]. 2005 Mar 28 [cited 2018 Jan 10];165(6):675. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15795345.CrossRef
125.
Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet [Internet]. 2013 Jan [cited 2018 Jan 10];21(1):8–13. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22713813.CrossRef
126.
Heksch R, Kamboj M, Anglin K, Obrynba K. Review of Prader-Willi syndrome: the endocrine approach. Transl Pediatr [Internet]. 2017 Oct [cited 2018 Jan 10];6(4):274–85. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29184809.CrossRef
127.
Nahum N, Forti E, Aksanov O, Birk R. Insulin regulates Bbs4 during adipogenesis. IUBMB Life [Internet]. 2017 Jul [cited 2018 Jan 10];69(7):489–99. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28371235.CrossRef
128.
McCandless SE, Committee on Genetics. Health Supervision for Children With Prader-Willi Syndrome. Pediatrics [Internet]. 2011 Jan 1 [cited 2018 Jan 10];127(1):195–204. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21187304.
129.
Chandler KE, Kidd A, Al-Gazali L, Kolehmainen J, Lehesjoki A-E, Black GCM, et al. Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. J Med Genet [Internet]. 2003 Apr [cited 2018 Jan 10];40(4):233–41. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12676892.CrossRef
130.
El Chehadeh-Djebbar S, Blair E, Holder-Espinasse M, Moncla A, Frances A-M, Rio M, et al. Changing facial phenotype in Cohen syndrome: towards clues for an earlier diagnosis. Eur J Hum Genet [Internet]. 2013 Jul 28 [cited 2018 Jan 10];21(7):736–42. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23188044.
131.
Limoge F, Faivre L, Gautier T, Petit J-M, Gautier E, Masson D, et al. Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome. Hum Mol Genet [Internet]. 2015 Dec 1 [cited 2018 Jan 10];24(23):6603–13. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26358774.CrossRef
132.
Ficarella R, Laviola L, Giorgino F. Lipodystrophic Diabetes Mellitus: a Lesson for Other Forms of Diabetes? Curr Diab Rep [Internet]. 2015 Mar 17 [cited 2018 Jan 10];15(3):12. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25687500.
133.
Innes AM, Dyment DA. Short Syndrome [Internet]. GeneReviews®. 1993 [Cited 2018 Jan 10]. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24830046.
134.
Garg A. Lipodystrophies: Genetic and Acquired Body Fat Disorders. J Clin Endocrinol Metab [Internet]. 2011 Nov 1 [cited 2018 Jan 10];96(11):3313–25. Available from: https://​academic.​oup.​com/​jcem/​article-lookup/​doi/​10.​1210/​jc.​2011-1159
135.
Lightbourne M, Brown RJ. Genetics of Lipodystrophy. Endocrinol Metab Clin North Am [Internet]. 2017 Jun [cited 2018 Jan 10];46(2):539–54. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28476236.
136.
Vatier C, Bidault G, Briand N, Guénantin A-C, Teyssières L, Lascols O, et al. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep [Internet]. 2013 Dec [cited 2018 Jan 10];13(6):757–67. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24026869.CrossRef
137.
Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J Clin Endocrinol Metab [Internet]. 2016 Dec [cited 2018 Jan 10];101(12):4500–11. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27710244.CrossRef
138.
Avila M, Dyment DA, Sagen JV, St-Onge J, Moog U, Chung BHY, et al. Clinical reappraisal of SHORT syndrome with PIK3R1 mutations: toward recommendation for molecular testing and management. Clin Genet [Internet]. 2016 Apr 1 [cited 2018 Jan 10];89(4):501–6. Available from: http://​doi.​wiley.​com/​10.​1111/​cge.​12688 CrossRef
139.
Huang-Doran I, Tomlinson P, Payne F, Gast A, Sleigh A, Bottomley W, et al. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight [Internet]. 2016 Oct 20 [cited 2018 Jan 10];1(17):e88766. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27766312.
140.
Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, et al. PIK3R1 Mutations Cause Syndromic Insulin Resistance with Lipoatrophy. Am J Hum Genet [Internet]. 2013 Jul 11 [cited 2018 Jan 11];93(1):141–9. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S000292971300232​2 CrossRef
141.
Boesgaard TW, Nielsen TT, Josefsen K, Hansen T, Jørgensen T, Pedersen O, et al. Huntington’s Disease Does Not Appear to Increase the Risk of Diabetes Mellitus. J Neuroendocrinol [Internet]. 2009 Sep 1 [cited 2018 Jan 11];21(9):770–6. Available from: http://​doi.​wiley.​com/​10.​1111/​j.​1365-2826.​2009.​01898.​x
142.
Guan Y, Maloney KA, Roter DL, Pollin TI. Evaluation of the Informational Content, Readability and Comprehensibility of Online Health Information on Monogenic Diabetes. J Genet Couns [Internet]. 2017 Sep 26 [cited 2018 Jan 16];1–8. Available from: http://​link.​springer.​com/​10.​1007/​s10897-017-0155-y

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »