Skip to main content
Top

06-21-2018 | Genetics | Review | Article

Impact of Genetic Determinants of HbA1c on Type 2 Diabetes Risk and Diagnosis

Journal: Current Diabetes Reports

Authors: Chloé Sarnowski, Marie-France Hivert

Publisher: Springer US

Abstract

Purpose of Review

Glycated hemoglobin (A1c) is used to diagnose type 2 diabetes and monitor glycemic control. Specific genetic variants interfere with A1c and effects/frequencies of some variants vary by ancestry. In this review, we summarize findings from large trans-ethnic meta-analyses of genome-wide association studies (GWAS) of A1c and describe some variants influencing erythrocyte biology and interfering with A1c.

Recent Findings

Recent GWAS meta-analyses have revealed 60 loci associated with A1c in multi-ethnic populations. The main A1c genetic driver in African Americans is rs1050828 (G6PD). Some identified loci are located in/near genes known as monogenic causes of erythrocytic disorders (ANK1, SPTA1) or iron disorders (TMPRSS6, HFE). Uncommon genetic variants (not revealed by GWAS) that are known to cause hemoglobinopathies may also influence A1C levels, partly by interfering with laboratory assays.

Summary

Specific genetic variants that have a large impact on A1c levels may influence clinical practice, especially in individuals of African descent. Efforts to reveal novel A1c loci should focus on increasing representation of GWAS in non-European ancestries, and on using better genome-wide coverage of uncommon variants that are specific to each population.
Literature
1.
Mortensen HB, Christophersen C. Glucosylation of human haemoglobin a in red blood cells studied in vitro. Kinetics of the formation and dissociation of haemoglobin A1c. Clin Chim Acta. 1983;134(3):317–26.CrossRefPubMed
2.
Chen P, Takeuchi F, Lee JY, Li H, Wu JY, Liang J, et al. Multiple non-glycemic genomic loci are newly associated with blood level of glycated hemoglobin in East Asians. Diabetes. 2014;63(7):2551–62.CrossRefPubMedPubMedCentral
3.
Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59(12):3229–39.CrossRefPubMedPubMedCentral
4.
•• Leong A, Meigs JB. Type 2 diabetes prevention: implications of hemoglobin A1c genetics. Rev Diabet Stud 2015 Fall-Winter;12(3–4):351–362. This review summarizes the main A1c GWAS discoveries from 2007 to 2015 and discusses how the GWAS loci may influence A1c. It also highlights the public health and clinical implications of A1c genetics for T2D population screening and prediction.
5.
•• Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C, Li M, Yao J, Sim X, Hong J, Chu AY, Zhang W, Wang X, Chen P, Maruthur NM, Porneala BC, Sharp SJ, Jia Y, Kabagambe EK, Chang LC, Chen WM, Elks CE, Evans DS, Fan Q, Giulianini F, Go MJ, Hottenga JJ, Hu Y, Jackson AU, Kanoni S, Kim YJ, Kleber ME, Ladenvall C, Lecoeur C, Lim SH, Lu Y, Mahajan A, Marzi C, Nalls MA, Navarro P, Nolte IM, Rose LM, Rybin DV, Sanna S, Shi Y, Stram DO, Takeuchi F, Tan SP, van der Most PJ, van Vliet-Ostaptchouk JV, Wong A, Yengo L, Zhao W, Goel A, Martinez Larrad MT, Radke D, Salo P, Tanaka T, van Iperen EPA, Abecasis G, Afaq S, Alizadeh BZ, Bertoni AG, Bonnefond A, Böttcher Y, Bottinger EP, Campbell H, Carlson OD, Chen CH, Cho YS, Garvey WT, Gieger C, Goodarzi MO, Grallert H, Hamsten A, Hartman CA, Herder C, Hsiung CA, Huang J, Igase M, Isono M, Katsuya T, Khor CC, Kiess W, Kohara K, Kovacs P, Lee J, Lee WJ, Lehne B, Li H, Liu J, Lobbens S, Luan J', Lyssenko V, Meitinger T, Miki T, Miljkovic I, Moon S, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nauck M, Pankow JS, Polasek O, Prokopenko I, Ramos PS, Rasmussen-Torvik L, Rathmann W, Rich SS, Robertson NR, Roden M, Roussel R, Rudan I, Scott RA, Scott WR, Sennblad B, Siscovick DS, Strauch K, Sun L, Swertz M, Tajuddin SM, Taylor KD, Teo YY, Tham YC, Tönjes A, Wareham NJ, Willemsen G, Wilsgaard T, Hingorani AD, EPIC-CVD Consortium, EPIC-InterAct Consortium, Lifelines Cohort Study, Egan J, Ferrucci L, Hovingh GK, Jula A, Kivimaki M, Kumari M, Njølstad I, Palmer CNA, Serrano Ríos M, Stumvoll M, Watkins H, Aung T, Blüher M, Boehnke M, Boomsma DI, Bornstein SR, Chambers JC, Chasman DI, Chen YDI, Chen YT, Cheng CY, Cucca F, de Geus EJC, Deloukas P, Evans MK, Fornage M, Friedlander Y, Froguel P, Groop L, Gross MD, Harris TB, Hayward C, Heng CK, Ingelsson E, Kato N, Kim BJ, Koh WP, Kooner JS, Körner A, Kuh D, Kuusisto J, Laakso M, Lin X, Liu Y, Loos RJF, Magnusson PKE, März W, McCarthy MI, Oldehinkel AJ, Ong KK, Pedersen NL, Pereira MA, Peters A, Ridker PM, Sabanayagam C, Sale M, Saleheen D, Saltevo J, Schwarz PEH, Sheu WHH, Snieder H, Spector TD, Tabara Y, Tuomilehto J, van Dam RM, Wilson JG, Wilson JF, Wolffenbuttel BHR, Wong TY, Wu JY, Yuan JM, Zonderman AB, Soranzo N, Guo X, Roberts DJ, Florez JC, Sladek R, Dupuis J, Morris AP, Tai ES, Selvin E, Rotter JI, Langenberg C, Barroso I, Meigs JB Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med 2017;14(9):e1002383. This paper describes the largest trans-ethnic meta-analysis of A1c to date.
6.
International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.CrossRef
7.
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–1.CrossRefPubMedPubMedCentral
8.
Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35(8):809–22.CrossRefPubMedPubMedCentral
9.
Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66(11):2888–902.CrossRefPubMedPubMedCentral
10.
van der Harst P, Zhang W, Mateo Leach I, Rendon A, Verweij N, Sehmi J, et al. Seventy-five genetic loci influencing the human red blood cell. Nature. 2012;492(7429):369–75.CrossRefPubMedPubMedCentral
11.
Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6PD)-deficient patients: implications for pharmacy. P T 2015 Sep;40(9):572–574.
12.
• Paterson AD. HbA1c for type 2 diabetes diagnosis in Africans and African Americans: personalized medicine NOW! PLoS Med 2017;14(9):e1002384. This paper focuses on the A1c G6PD locus in Africans and African Americans and discusses the clinical implications of genetic interference in individuals at risk to develop T2D and also in diabetics.
15.
Suzuki M, Yamazaki H, Mukai HY, Motohashi H, Shi L, Tanabe O, et al. Disruption of the Hbs1l-Myb locus causes hereditary persistence of fetal hemoglobin in a mouse model. Mol Cell Biol. 2013;33(8):1687–95.CrossRefPubMedPubMedCentral
16.
Lacy ME, Wellenius GA, Sumner AE, Correa A, Carnethon MR, Liem RI, et al. Association of sickle cell trait with hemoglobin A1c in African Americans. JAMA. 2017;317(5):507–15.CrossRefPubMedPubMedCentral
17.
Sumner AE, Thoreson CK, O'Connor MY, Ricks M, Chung ST, Tulloch-Reid MK, et al. Detection of abnormal glucose tolerance in Africans is improved by combining A1C with fasting glucose: the Africans in America study. Diabetes Care. 2015;38(2):213–9.CrossRefPubMed
18.
Bleyer AJ, Vidya S, Sujata L, Russell GB, Akinnifesi D, Hire D, et al. The impact of sickle cell trait on glycated haemoglobin in diabetes mellitus. Diabet Med. 2010;27(9):1012–6.CrossRefPubMed
19.
Barbedo MM, McCurdy PR. Red cell life span in sickle cell trait. Acta Haematol. 1974;51(6):339–43.CrossRefPubMed
20.
McCurdy PR. 32-DFP and 51-Cr for measurement of red cell life span in abnormal hemoglobin syndromes. Blood. 1969;33(2):214–24.PubMed
21.
Suarez RM, Buso R, Meyer LM, Olavarrieta ST. Distribution of abnormal hemoglobins in Puerto Rico and survival studies of red blood cells using Cr51. Blood. 1959;14(3):255–61.PubMed
22.
Weinstein IM, Spurling CL, Klein H, Necheles TF. Radioactive sodium chromate for the study of survival of red blood cells. III. The abnormal hemoglobin syndromes. Blood. 1954;9(12):1155–64.PubMed
23.
Frank EL, Moulton L, Little RR, Wiedmeyer HM, Rohlfing C, Roberts WL. Effects of hemoglobin C and S traits on seven glycohemoglobin methods. Clin Chem. 2000;46(6 Pt 1):864–7.PubMed
24.
Luzzatto L, Usanga FA, Reddy S. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 1969;164(3881):839–42.CrossRefPubMed
25.
Adams AS, Trinacty CM, Zhang F, Kleinman K, Grant RW, Meigs JB, et al. Medication adherence and racial differences in A1C control. Diabetes Care. 2008;31(5):916–21.CrossRefPubMedPubMedCentral
26.
Chapp-Jumbo E, Edeoga C, Wan J, Dagogo-Jack S. Pathobiology of prediabetes in a biracial cohort (POP-ABC) research group. Ethnic disparity in hemoglobin A1c levels among normoglycemic offspring of parents with type 2 diabetes mellitus. Endocr Pract. 2012;18(3):356–62.CrossRefPubMed
27.
Herman WH, Dungan KM, Wolffenbuttel BH, Buse JB, Fahrbach JL, Jiang H, et al. Racial and ethnic differences in mean plasma glucose, hemoglobin A1c, and 1,5-anhydroglucitol in over 2000 patients with type 2 diabetes. J Clin Endocrinol Metab. 2009;94(5):1689–94.CrossRefPubMed
28.
Dagogo-Jack S, Edeoga C, Ebenibo S, Chapp-Jumbo E. Pathobiology of prediabetes in a biracial cohort (POP-ABC) research group. Pathobiology of prediabetes in a biracial cohort (POP-ABC) study: baseline characteristics of enrolled subjects. J Clin Endocrinol Metab. 2013;98(1):120–8.CrossRefPubMed
29.
Saaddine JB, Fagot-Campagna A, Rolka D, Narayan KM, Geiss L, Eberhardt M, et al. Distribution of HbA(1c) levels for children and young adults in the U.S.: Third National Health and Nutrition Examination Survey. Diabetes Care. 2002;25(8):1326–30.CrossRefPubMed
30.
Brody JA, Morrison AC, Bis JC, O'Connell JR, Brown MR, Huffman JE, et al. Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology. Nat Genet. 2017;49(11):1560–3.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »