Skip to main content
Top

02-01-2018 | Epidemiology | Article

Cataract in patients with diabetes mellitus—incidence rates in the UK and risk factors

Journal: Eye

Authors: Claudia Becker, Cornelia Schneider, Samuel Aballéa, Clare Bailey, Rupert Bourne, Susan Jick, Christoph Meier

Publisher: Nature Publishing Group UK

share
SHARE

Abstract

Aims

To analyze the risk of incident cataract (diagnosis or extraction) in patients with or without diabetes focusing on other comorbid conditions, antidiabetic drug use, and diabetes duration.

Methods

The study population comprised newly diagnosed diabetes patients (≥40 years) from the UK-based Clinical Practice Research Datalink (CPRD) between 2000 and 2015, and a random sample of the general population matched for age, sex, general practice, and year of diabetes diagnosis. We assessed cataract incidence rates (IRs) and performed a nested case-control analysis in the diabetic cohort to assess potential risk factors for a cataract.

Results

There were 56,510 diabetes patients included in the study. IRs of cataract were 20.4 (95% CI 19.8–20.9) per 1000 person-years (py) in patients with diabetes and 10.8 (95% CI 10.5–11.2) per 1000 py in the general population. IRs increased considerably around the age of 80 years and with a concomitant diagnosis of macular edema. The incidence rate ratio (IRR) was highest in patients of the age group of 45–54 years. In the nested case-control study, we identified 5800 patients with cataract. Risk of cataract increased with increasing diabetes duration (adj. OR 5.14, 95% CI 4.19–6.30 diabetes for ≥10 years vs. diabetes <2 years).

Conclusions

According to our study, diabetes is associated with an approximately two-fold increased detection rate of cataract. The risk of cataract associated with diabetes is highest at younger ages. Patients with diabetic macular edema are at an increased risk for cataract as well as patients with long-standing diabetes.
Literature
1.
Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49. CrossRefPubMed
2.
Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365:599–609. CrossRefPubMed
3.
Tan JS, Wang JJ, Younan C, Cumming RG, Rochtchina E, Mitchell P. Smoking and the long-term incidence of cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol. 2008;15:155–61. CrossRefPubMed
4.
Hollows F, Moran D. Cataract–the ultraviolet risk factor. Lancet. 1981;2:1249–50. CrossRefPubMed
5.
Urban RCJ, Cotlier E. Corticosteroid-induced cataract. Surv Ophthalmol. 1986;31:102–10. CrossRefPubMed
6.
Delcourt C, Cristol JP, Tessier F, Leger CL, Michel F, Papoz L. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study. Pathologies Oculaires Liees a l’Age. Am J Epidemiol. 2000;151:497–504. CrossRefPubMed
7.
Laitinen A, Laatikainen L, Harkanen T, Koskinen S, Reunanen A, Aromaa A. Prevalence of major eye diseases and causes of visual impairment in the adult Finnish population: a nationwide population-based survey. Acta Ophthalmol. 2010;88:463–71. CrossRefPubMed
8.
Theodoropoulou S, Theodossiadis P, Samoli E, Vergados I, Lagiou P, Tzonou A. The epidemiology of cataract: a study in Greece. Acta Ophthalmol. 2011;89:e167–73. CrossRefPubMed
9.
Li L, Wan XH, Zhao GH. Meta-analysis of the risk of cataract in type 2 diabetes. BMC Ophthalmol. 2014;14:94. CrossRefPubMedPubMedCentral
10.
Harding JJ, Egerton M, van Heyningen R, Harding RS. Diabetes, glaucoma, sex, and cataract: analysis of combined data from two case control studies. Br J Ophthalmol. 1993;77:2–6. CrossRefPubMedPubMedCentral
11.
Janghorbani MB, Jones RB, Allison SP. Incidence of and risk factors for cataract among diabetes clinic attenders. Ophthalmic Epidemiol. 2000;7:13–25. CrossRefPubMed
12.
Machan CM, Hrynchak PK, Irving EL. Age-related cataract is associated with type 2 diabetes and statin use. Optom Vision Sci: Off Publ Am Acad Optom. 2012;89:1165–71. CrossRef
13.
Jaycock P, Johnston RL, Taylor H, Adams M, Tole DM, Galloway P, et al. The Cataract National Dataset electronic multi-centre audit of 55,567 operations: updating benchmark standards of care in the United Kingdom and internationally. Eye. 2009;23:38–49. CrossRefPubMed
14.
Walley T, Mantgani A. The UK general practice research database. Lancet. 1997;350:1097–9. CrossRefPubMed
15.
Williams T, van Staa T, Puri S, Eaton S. Recent advances in the utility and use of the General Practice Research Database as an example of a UK Primary Care Data resource. Ther Adv Drug Saf. 2012;3:89–99. CrossRefPubMedPubMedCentral
16.
Jick SS, Kaye JA, Vasilakis-Scaramozza C, Garcia Rodriguez LA, Ruigomez A, Meier CR, et al. Validity of the general practice research database. Pharmacotherapy. 2003;23:686–9. CrossRefPubMed
17.
Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: a systematic review. Br J Clin Pharmacol. 2010;69:4–14. CrossRefPubMedPubMedCentral
18.
Lawrenson R, Williams T, Farmer R. Clinical information for research; the use of general practice databases. J Public Health Med. 1999;21:299–304. CrossRefPubMed
19.
Klein BE, Klein R, Moss SE. Incidence of cataract surgery in the wisconsin epidemiologic study of diabetic retinopathy. Am J Ophthalmol. 1995;119:295–300. CrossRefPubMed
20.
Kang EM, Pinheiro SP, Hammad TA, Abou-Ali A. Evaluating the validity of clinical codes to identify cataract and glaucoma in the UK Clinical Practice Research Datalink. Pharmacoepidemiol Drug Saf. 2015;24:38–44. CrossRefPubMed