Skip to main content
Top

09-03-2017 | Osteoporosis | Review | Article

Obesity, Type 2 Diabetes and Bone in Adults

Journal: Calcified Tissue International

Authors: Jennifer S. Walsh, Tatiane Vilaca

Publisher: Springer US

Abstract

In an increasingly obese and ageing population, type 2 diabetes (T2DM) and osteoporotic fracture are major public health concerns. Understanding how obesity and type 2 diabetes modulate fracture risk is important to identify and treat people at risk of fracture. Additionally, the study of the mechanisms of action of obesity and T2DM on bone has already offered insights that may be applicable to osteoporosis in the general population. Most available evidence indicates lower risk of proximal femur and vertebral fracture in obese adults. However the risk of some fractures (proximal humerus, femur and ankle) is higher, and a significant number fractures occur in obese people. BMI is positively associated with BMD and the mechanisms of this association in vivo may include increased loading, adipokines such as leptin, and higher aromatase activity. However, some fat depots could have negative effects on bone; cytokines from visceral fat are pro-resorptive and high intramuscular fat content is associated with poorer muscle function, attenuating loading effects and increasing falls risk. T2DM is also associated with higher bone mineral density (BMD), but increased overall and hip fracture risk. There are some similarities between bone in obesity and T2DM, but T2DM seems to have additional harmful effects and emerging evidence suggests that glycation of collagen may be an important factor. Higher BMD but higher fracture risk presents challenges in fracture prediction in obesity and T2DM. Dual energy X-ray absorptiometry underestimates risk, standard clinical risk factors may not capture all relevant information, and risk is under-recognised by clinicians. However, the limited available evidence suggests that osteoporosis treatment does reduce fracture risk in obesity and T2DM with generally similar efficacy to other patients.
Literature
1.
Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, Parry V (2007) Tackling obesities: future choices—Project Report. London: Government Office for Science.
3.
De LC, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ, III, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16 (11):1330–1338. doi:10.​1007/​s00198-005-1863-y [doi]CrossRef
4.
Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, LaCroix AZ, Roux C, Sambrook PN, Siris ES (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124(11):1043–1050. doi:10.​1016/​j.​amjmed.​2011.​06.​013 CrossRefPubMedPubMedCentral
5.
Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogues X, Compston JE, Diez-Perez A (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300. doi:10.​1002/​jbmr.​1466 CrossRefPubMed
6.
Premaor MO, Comim FV, Compston JE (2014) Obesity and fractures. Arq Bras Endocrinol Metabol 58(5):470–477CrossRefPubMed
7.
Yang S, Shen X (2015) Association and relative importance of multiple obesity measures with bone mineral density: the National Health and Nutrition Examination Survey 2005–2006. Arch Osteoporos 10:14. doi:10.​1007/​s11657-015-0219-2 CrossRefPubMed
8.
Knapp KM, Welsman JR, Hopkins SJ, Fogelman I, Blake GM (2012) Obesity increases precision errors in dual-energy X-ray absorptiometry measurements. J Clin Densitom 15(3):315–319. doi:10.​1016/​j.​jocd.​2012.​01.​002 CrossRefPubMed
9.
Berg RM, Wallaschofski H, Nauck M, Rettig R, Markus MR, Laqua R, Friedrich N, Hannemann A (2015) Positive association between adipose tissue and bone stiffness. Calcif Tissue Int 97(1):40–49. doi:10.​1007/​s00223-015-0008-3 CrossRefPubMed
10.
Evans AL, Paggiosi MA, Eastell R, Walsh JS (2015) Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res 30(5):920–928. doi:10.​1002/​jbmr.​2407 CrossRefPubMed
11.
Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res 28(7):1679–1687. doi:10.​1002/​jbmr.​1880 CrossRefPubMed
12.
Bachmann KN, Fazeli PK, Lawson EA, Russell BM, Riccio AD, Meenaghan E, Gerweck AV, Eddy K, Holmes T, Goldstein M, Weigel T, Ebrahimi S, Mickley D, Gleysteen S, Bredella MA, Klibanski A, Miller KK (2014) Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J Clin Endocrinol Metab 99(12):4664–4673. doi:10.​1210/​jc.​2014-2104 CrossRefPubMedPubMedCentral
13.
Shen J, Nielson CM, Marshall LM, Lee DC, Keaveny TM, Orwoll ES, Osteoporotic Fractures in Men Mr OSRG (2015) The association between BMI and QCT-derived proximal hip structure and strength in older men: a cross-sectional study. J Bone Miner Res 30(7):1301–1308. doi:10.​1002/​jbmr.​2450 CrossRefPubMedPubMedCentral
14.
Majumder S, Roychowdhury A, Pal S (2008) Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. J Biomech 41(13):2834–2842. doi:10.​1016/​j.​jbiomech.​2008.​07.​001 CrossRefPubMed
15.
Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB, Health ABCS (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25(3):513–519. doi:10.​1359/​jbmr.​090807 CrossRefPubMed
16.
Scott D, Daly RM, Sanders KM, Ebeling PR (2015) Fall and fracture risk in sarcopenia and dynapenia with and without obesity: the role of lifestyle interventions. Curr Osteoporos Rep 13(4):235–244. doi:10.​1007/​s11914-015-0274-z CrossRefPubMed
17.
Himes CL, Reynolds SL (2012) Effect of obesity on falls, injury, and disability. J Am Geriatr Soc 60(1):124–129. doi:10.​1111/​j.​1532-5415.​2011.​03767.​x CrossRefPubMed
18.
Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15(8):1526–1536. doi:10.​1359/​jbmr.​2000.​15.​8.​1526 [doi]CrossRefPubMed
19.
Reid IR, Ames RW, Evans MC, Sharpe SJ, Gamble GD (1994) Determinants of the rate of bone loss in normal postmenopausal women. J Clin Endocrinol Metab 79(4):950–954PubMed
20.
Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175(2):405–415CrossRefPubMed
21.
Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19(7):905–912. doi:10.​1007/​s00198-007-0487-9 [doi]CrossRefPubMed
22.
Reid IR (2010) Fat and bone. Arch Biochem Biophys 503(1):20–27. doi:10.​1016/​j.​abb.​2010.​06.​027 [doi]CrossRefPubMed
23.
Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4):646–651CrossRefPubMed
24.
Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 21(10):1648–1656. doi:10.​1359/​jbmr.​060707 CrossRefPubMed
25.
Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA, Guo XE, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17(6):901–915. doi:10.​1016/​j.​cmet.​2013.​04.​009 CrossRefPubMedPubMedCentral
26.
Riis BJ, Rodbro P, Christiansen C (1986) The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of postmenopausal osteoporosis. Calcif Tissue Int 38(6):318–322CrossRefPubMed
27.
Walsh JS, Henriksen DB (2010) Feeding and bone. Arch Biochem Biophys 503(1):11–19. doi:10.​1016/​j.​abb.​2010.​06.​020 [doi]CrossRefPubMed
28.
Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, Jacques RM, Eastell R (2016) Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr 103(6):1465–1471. doi:10.​3945/​ajcn.​115.​120139 CrossRefPubMed
29.
Morley JE, Baumgartner RN (2004) Cytokine-related aging process. J Gerontol A Biol Sci Med Sci 59(9):M924–M929CrossRefPubMed
30.
Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, Muller R, Zhao B, Guo X, Lang T, Saeed I, Liu XS, Guo XE, Cremers S, Rosen CJ, Stein EM, Nickolas TL, McMahon DJ, Young P, Shane E (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98(6):2562–2572. doi:10.​1210/​jc.​2013-1047 CrossRefPubMedPubMedCentral
31.
Ng AC, Melton LJ 3rd, Atkinson EJ, Achenbach SJ, Holets MF, Peterson JM, Khosla S, Drake MT (2013) Relationship of adiposity to bone volumetric density and microstructure in men and women across the adult lifespan. Bone 55(1):119–125. doi:10.​1016/​j.​bone.​2013.​02.​006 CrossRefPubMedPubMedCentral
32.
Zhang P, Peterson M, Su GL, Wang SC (2015) Visceral adiposity is negatively associated with bone density and muscle attenuation. Am J Clin Nutr 101(2):337–343. doi:10.​3945/​ajcn.​113.​081778 CrossRefPubMed
33.
Premaor M, Parker RA, Cummings S, Ensrud K, Cauley JA, Lui LY, Hillier T, Compston J, Study of Osteoporotic Fractures Research G (2013) Predictive value of FRAX for fracture in obese older women. J Bone Miner Res 28(1):188–195. doi:10.​1002/​jbmr.​1729 CrossRefPubMedPubMedCentral
34.
Eastell R, Black DM, Boonen S, Adami S, Felsenberg D, Lippuner K, Cummings SR, Delmas PD, Palermo L, Mesenbrink P, Cauley JA, Trial HPF (2009) Effect of once-yearly zoledronic acid five milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab 94(9):3215–3225. doi:10.​1210/​jc.​2008-2765 CrossRefPubMedPubMedCentral
35.
McClung MR, Boonen S, Torring O, Roux C, Rizzoli R, Bone HG, Benhamou CL, Lems WF, Minisola S, Halse J, Hoeck HC, Eastell R, Wang A, Siddhanti S, Cummings SR (2012) Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res 27(1):211–218. doi:10.​1002/​jbmr.​536 CrossRefPubMed
36.
Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505. doi:10.​1093/​aje/​kwm106 CrossRefPubMed
37.
Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis Int 18(4):427–444. doi:10.​1007/​s00198-006-0253-4 CrossRef
38.
Shah VN, Shah CS, Snell-Bergeon JK (2015) Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med 32(9):1134–1142. doi:10.​1111/​dme.​12734 CrossRefPubMedPubMedCentral
39.
Fan Y, Wei F, Lang Y, Liu Y (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27(1):219–228. doi:10.​1007/​s00198-015-3279-7 CrossRefPubMed
40.
Dytfeld J, Michalak M (2016) Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res. doi:10.​1007/​s40520-016-0562-1 PubMedPubMedCentral
41.
Hu F, Jiang C, Shen J, Tang P, Wang Y (2012) Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43(6):676–685. doi:10.​1016/​j.​injury.​2011.​05.​017 CrossRefPubMed
42.
Ekstrom W, Al-Ani AN, Saaf M, Cederholm T, Ponzer S, Hedstrom M (2013) Health related quality of life, reoperation rate and function in patients with diabetes mellitus and hip fracture—a 2 year follow-up study. Injury 44(6):769–775. doi:10.​1016/​j.​injury.​2012.​10.​003 CrossRefPubMed
43.
Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, Deng L (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 30(4):297–302. doi:10.​1002/​cbf.​2801 CrossRefPubMed
44.
Shanbhogue VV, Hansen S, Frost M, Jorgensen NR, Hermann AP, Henriksen JE, Brixen K (2016) Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol 174(2):115–124. doi:10.​1530/​eje-15-0860 CrossRefPubMed
45.
Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055. doi:10.​1210/​jc.​2010-0226 CrossRefPubMedPubMedCentral
46.
Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM (2013) Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28(2):313–324. doi:10.​1002/​jbmr.​1763 CrossRefPubMedPubMedCentral
47.
Starup-Linde J, Vestergaard P (2016) Biochemical bone turnover markers in diabetes mellitus—a systematic review. Bone 82:69–78. doi:10.​1016/​j.​bone.​2015.​02.​019 CrossRefPubMed
48.
Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25(6):1697–1708. doi:10.​1007/​s00198-014-2676-7 CrossRefPubMed
49.
Leite Duarte ME, da Silva RD (1996) Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo 51(1):7–11PubMed
50.
Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR (2012) Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 97(9):3240–3250. doi:10.​1210/​jc.​2012-1546 CrossRefPubMedPubMedCentral
51.
Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17(10):1514–1523. doi:10.​1007/​s00198-006-0155-5 CrossRefPubMed
52.
Avery NC, Bailey AJ (2006) The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol (Paris) 54(7):387–395. doi:10.​1016/​j.​patbio.​2006.​07.​005 CrossRef
53.
Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T (2008) Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 26(1):93–100. doi:10.​1007/​s00774-007-0784-6 CrossRefPubMed
54.
Farr JN, Khosla S (2016) Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82:28–34. doi:10.​1016/​j.​bone.​2015.​07.​027 CrossRefPubMed
55.
Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 101(6):2502–2510. doi:10.​1210/​jc.​2016-1437 CrossRefPubMed
56.
Tilling LM, Darawil K, Britton M (2006) Falls as a complication of diabetes mellitus in older people. J Diabetes Complicat 20(3):158–162. doi:10.​1016/​j.​jdiacomp.​2005.​06.​004 CrossRefPubMed
57.
Hewston P, Deshpande N (2016) Falls and balance impairments in older adults with type 2 diabetes: thinking beyond diabetic peripheral neuropathy. Can J Diabetes 40(1):6–9. doi:10.​1016/​j.​jcjd.​2015.​08.​005 CrossRefPubMed
58.
Mattishent K, Loke YK (2016) Meta-analysis: association between hypoglycaemia and serious adverse events in older patients. J Diabetes Complicat. doi:10.​1016/​j.​jdiacomp.​2016.​03.​018 PubMed
59.
Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR, Study of Osteoporotic Features Research G (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86(1):32–38. doi:10.​1210/​jcem.​86.​1.​7139 CrossRefPubMed
60.
Palermo A, D’Onofrio L, Eastell R, Schwartz AV, Pozzilli P, Napoli N (2015) Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int 26(8):2073–2089. doi:10.​1007/​s00198-015-3123-0 CrossRefPubMed
61.
Mannucci E, Dicembrini I (2015) Drugs for type 2 diabetes: role in the regulation of bone metabolism. Clin Cases Miner Bone Metab 12(2):130–134. doi:10.​11138/​ccmbm/​2015.​12.​2.​130 PubMedPubMedCentral
62.
Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146(3):1226–1235. doi:10.​1210/​en.​2004-0735 CrossRefPubMed
63.
Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G, Diabetes Outcome Progression Trial Study Group (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 31(5):845–851. doi:10.​2337/​dc07-2270 CrossRefPubMed
64.
Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, Meininger G (2016) Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 101(1):157–166. doi:10.​1210/​jc.​2015-3167 CrossRefPubMed
65.
Taylor SI, Blau JE, Rother KI (2015) Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 3(1):8–10. doi:10.​1016/​S2213-8587(14)70227-X CrossRefPubMed
66.
Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, Li F, Sheng C, Han Y, Qu S, Wang J (2015) Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine 48(1):107–115. doi:10.​1007/​s12020-014-0361-4 CrossRefPubMed
67.
Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27(2):301–308. doi:10.​1002/​jbmr.​556 CrossRefPubMed
68.
Fraser LA, Papaioannou A, Adachi JD, Ma J, Thabane L (2014) Fractures are increased and bisphosphonate use decreased in individuals with insulin-dependent diabetes: a 10 year cohort study. BMC Musculoskelet Disord 15:201. doi:10.​1186/​1471-2474-15-201 CrossRefPubMedPubMedCentral
69.
Schwartz A, Vittinghof E, Bauer DC, Cummings SR, Grey A, McClung MR, Napoli N, Reid IR, Schafer AL, Wallace RB, Black DM (2015) Bisphosphonates reduce fracture risk in postmenopausal women with diabetes: Results from FIT and HORIZON trials. Paper presented at the American Society for Bone and Mineral Research
70.
Hamann C, Rauner M, Hohna Y, Bernhardt R, Mettelsiefen J, Goettsch C, Gunther KP, Stolina M, Han CY, Asuncion FJ, Ominsky MS, Hofbauer LC (2013) Sclerostin antibody treatment improves bone mass, bone strength, and bone defect regeneration in rats with type 2 diabetes mellitus. J Bone Miner Res 28(3):627–638. doi:10.​1002/​jbmr.​1803 CrossRefPubMed
71.
Hamann C, Picke AK, Campbell GM, Balyura M, Rauner M, Bernhardt R, Huber G, Morlock MM, Gunther KP, Bornstein SR, Gluer CC, Ludwig B, Hofbauer LC (2014) Effects of parathyroid hormone on bone mass, bone strength, and bone regeneration in male rats with type 2 diabetes mellitus. Endocrinology 155(4):1197–1206. doi:10.​1210/​en.​2013-1960 CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »