Skip to main content
Top

13-03-2017 | Nephropathy | Article

Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy

Journal: Reviews in Endocrine and Metabolic Disorders

Authors: Zubair Ilyas, Joumana T. Chaiban, Armand Krikorian

Publisher: Springer US

Abstract

Diabetic nephropathy (DN) is a well-described complication of diabetes mellitus and the leading cause of end stage renal disease (ESRD). Although increased albuminuria has been the gold standard for screening, data suggests that renal damage starts long before the onset of clinically apparent increases in macro and even micro-albuminuria. Clinical practice guidelines for the prevention of DN have been traditionally focused on the control of serum glucose, blood pressure and dyslipidemia, with some focus on the renin-angiotensin-aldosterone system (RAAS) as a main target for successful therapy. Recent evidence has led to a better understanding of the underlying mechanisms of the pathophysiology of this disease and suggests that various novels pathways can be targeted to delay and even prevent the progression of DN. Hence a more comprehensive therapeutic approach to therapy is on the horizon, carrying the promise for a more successful and impactful management. This review will highlight new insights into the pathophysiology, clinical aspects and future diagnostic and therapeutic modalities for DN.
Literature
1.
Tang SCW, Chan GCW, Lai KN. Recent advances in managing and understanding diabetic nephropathy. F1000Research. 2016;5:1044.CrossRef
2.
Sheira G, Noreldin N, Tamer A, Saad M. Urinary biomarker N-acetyl-β-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J Diabetes Metab Disord. 2015;14:4.CrossRefPubMedPubMedCentral
3.
Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51:905–15.CrossRefPubMed
4.
Kitada M, Ogura Y, Koya D. Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renov Dis. 2016;9:279–90.CrossRef
5.
Tuttle KR, et al. Diabetic kidney disease: a report from an ADA consensus conference. Am J Kidney Dis. 2014;64:510–33.CrossRefPubMed
6.
Grassi G, Mancia G, Nilsson PM. Specific blood pressure targets for patients with diabetic nephropathy? Diabetes Care. 2016;39:S228–33.CrossRefPubMed
7.
Arieff, A. I. Diabetic Nephropathy and Treatment of Hypertension. Endotext. South Dartmouth, MDText.​com, Inc. (2000)
8.
Fioretto P, Steffes MW, Brown DM, Mauer SM. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis. 1992;20:549–58.CrossRefPubMed
9.
Tervaert TWC, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.CrossRefPubMed
10.
Makita Z, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.CrossRefPubMed
11.
Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J. 2016;33:645–52.CrossRefPubMed
12.
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300.CrossRefPubMed
13.
Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol. 2013;76(4):573–9. doi:10.​1111/​bcp.​12064.
14.
Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393–405.CrossRefPubMed
15.
Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27:820–30.CrossRefPubMed
16.
Mishra R, Emancipator SN, Kern T, Simonson MS. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int. 2005;67:82–93.CrossRefPubMed
17.
Chen X, et al. Effects of astragalosides from radix Astragali on high glucose-induced proliferation and extracellular matrix accumulation in glomerular mesangial cells. Exp Ther Med. 2016;11:2561–6.PubMedPubMedCentral
18.
Ge J, Miao J-J, Sun X-Y, Yu J-Y. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats. J Ethnopharmacol. 2016;189:238–49.CrossRefPubMed
19.
Li X-Q, et al. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Sci Rep. 2016;6:26854.CrossRefPubMedPubMedCentral
20.
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.PubMed
21.
Bakris GL, et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med. 2003;163:1555–65.CrossRefPubMed
22.
Andersen S, Bröchner-Mortensen J, Parving H-H, Irbesartan in Patients With Type 2 Diabetes and Microalbuminuria Study Group. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care. 2003;26:3296–302.CrossRefPubMed
23.
Fried LF, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.CrossRefPubMed
24.
Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GFM. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:542–51.CrossRefPubMedPubMedCentral
25.
Bakris GL, et al. Effect of Finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.CrossRefPubMed
26.
Pitt B, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34:2453–63.CrossRefPubMedPubMedCentral
27.
Gnudi L. Angiopoietins and diabetic nephropathy. Diabetologia. 2016;59:1616–20.CrossRefPubMedPubMedCentral
28.
Campbell KN, Raij L, Mundel P. Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes. Curr Diabetes Rev. 2011;7:3–7.CrossRefPubMedPubMedCentral
29.
Dessapt-Baradez C, et al. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J Am Soc Nephrol. 2014;25:33–42.CrossRefPubMed
30.
Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.CrossRefPubMedPubMedCentral
31.
Devarajan P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology. 2010;15:419–28.CrossRefPubMed
33.
Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev. 2016; doi:10.​1002/​dmrr.​2841.PubMed
34.
Bouvet BR, et al. Evaluation of urinary N-acetyl-beta-D-glucosaminidase as a marker of early renal damage in patients with type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2014;58:798–801.CrossRefPubMed
35.
Al-Refai AA, Tayel SI, Ragheb A, Dala AG, Zahran A. Urinary neutrophil gelatinase associated lipocalin as a marker of tubular damage in type 2 diabetic patients with and without albuminuria. Open J Nephrol. 2014;4:37–46.CrossRef
36.
Ibrahim MA, et al. Value of urinary Cystatin C in early detection of Diabeticnephropathy in type 2 diabetes mellitus. Int J Adv Res BiolSci Int J Adv Res Biol Sci. 2015;2:211–23.
37.
Čabarkapa V. Cystatin C - more than the marker of the glomerular filtration rate. Med Pregl. 68:173–9.
38.
Olsson MG, et al. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α1-microglobulin. Antioxid Redox Signal. 2012;17:813–46.CrossRefPubMed
39.
Saif A, Soliman N. Urinary α1 -microglobulin and albumin excretion in children and adolescents with type 1 diabetes. J Diabetes. 2017;9:61–4.CrossRefPubMed
40.
Robles-Osorio ML, Sabath E. Tubular dysfunction and non-albuminuric renal disease in subjects with type 2 diabetes mellitus. Rev Investig Clin. 66:234–9.
41.
Yashima I, Hirayama T, Shiiki H, Kanauchi M, Dohi K. Diagnostic significance of urinary immunoglobulin G in diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1999;41:787–96.PubMed
42.
Narita T, Hosoba M, Kakei M, Ito S. Increased urinary excretions of immunoglobulin g, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes. Diabetes Care. 2006;29:142–4.CrossRefPubMed
43.
Nikolov A, et al. Serum anti-collagen type IV IgM antibodies and development of diabetic nephropathy in diabetics with essential hypertension. Cent J Immunol. 2016;41:86–92.CrossRef
44.
Jim B, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One. 2012;7:e36041.CrossRefPubMedPubMedCentral
45.
do Nascimento JF, et al. Messenger RNA levels of podocyte-associated proteins in subjects with different degrees of glucose tolerance with or without nephropathy. BMC Nephrol. 2013;14:214.CrossRefPubMedPubMedCentral
46.
Wada Y, et al. Original research: potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney disease models. Exp Biol Med (Maywood). 2016;241(1865–76)
47.
Zhuang Z, et al. Increased urinary angiotensinogen precedes the onset of albuminuria in normotensive type 2 diabetic patients. Int J Clin Exp Pathol. 2015;8:11464–9.PubMedPubMedCentral
48.
Viswanathan V, Sivakumar S, Sekar V, Umapathy D, Kumpatla S. Clinical significance of urinary liver-type fatty acid binding protein at various stages of nephropathy. Indian J Nephrol. 2015;25:269–73.CrossRefPubMedPubMedCentral
49.
Kamijo-Ikemori A, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–8.CrossRefPubMed
50.
Perez-Gomez MV, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med. 2015;4:1325–47.CrossRefPubMedPubMedCentral
51.
Zhang J, Fu H, Xu Y, Niu Y, An X. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. J Nat Med. 2016;70:740–8.CrossRefPubMed
52.
Mende C. Management of Chronic Kidney Disease: the relationship between serum uric acid and development of nephropathy. Adv Ther. 2015;32:1177–91.CrossRefPubMedPubMedCentral
53.
Hosoya T, et al. Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Clin Exp Nephrol. 2014;18:876–84.CrossRefPubMedPubMedCentral
54.
Kato S, et al. Randomized control trial for the assessment of the anti-albuminuric effects of topiroxostat in hyperuricemic patients with diabetic nephropathy (the ETUDE study). Nagoya J Med Sci. 2016;78:135–42.PubMedPubMedCentral
55.
de Zeeuw D, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376:1543–51.CrossRefPubMed
56.
Sanchez-Niño M-D, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Ren Physiol. 2012;302:F647–57.CrossRef
57.
Xu L, et al. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J Diabetes Investig. 2016;7:680–8.CrossRefPubMedPubMedCentral
58.
Fujita T, et al. Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic renal disease. Kidney Int. 2007;72:1543–9.CrossRefPubMed
59.
Singh VK, et al. Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine. Indian J Nephrol. 2015;25:334–9.CrossRefPubMedPubMedCentral
60.
Ohno S, et al. Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure. Sci Rep. 2016;6:27192.CrossRefPubMedPubMedCentral
61.
de Zeeuw D, et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 2015;3:181–90.CrossRefPubMed
62.
Takazakura A, et al. Renoprotective effects of atorvastatin compared with pravastatin on progression of early diabetic nephropathy. J Diabetes Investig. 2015;6:346–53.CrossRefPubMed
63.
Apostolopoulou M, Corsini A, Roden M. The role of mitochondria in statin-induced myopathy. Eur J Clin Investig. 2015;45:745–54.CrossRef
64.
Aiman U, Najmi A, Khan R. Statin induced diabetes and its clinical implications. J Pharmacol Pharmacother. 2014;5:181.CrossRefPubMedPubMedCentral
65.
Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232:731–42.CrossRefPubMed
66.
Kim Y, Park CW. New therapeutic agents in diabetic nephropathy. Korean J Intern Med. 2017;32:11–25.CrossRefPubMedPubMedCentral
67.
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol. 2016;791:8–24.CrossRefPubMed
68.
Parving H-H, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.CrossRefPubMed
69.
Soleymanian T, et al. Non-diabetic renal disease with or without diabetic nephropathy in type 2 diabetes: clinical predictors and outcome. Ren Fail. 2015;37:572–5.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »