Skip to main content
Top

18-04-2016 | Metabolic surgery | Article

Longer-Term Physiological and Metabolic Effects of Gastric Bypass Surgery

Journal: Current Diabetes Reports

Authors: J. David Mosinski, John P. Kirwan

Publisher: Springer US

Abstract

Obesity is closely associated with the development of type 2 diabetes. Many strategies have been used in the past to combat these two conditions, but very few provide for stable and durable glycemic control. Bariatric surgery has emerged as a powerful tool for treating obesity and in over 70 % of cases provides a short-term cure for diabetes. While the acute metabolic effects of surgery are striking, it remains important for us to also consider the long-term effects. This review aims to summarize the chronic or long-term metabolic and physiological effects of Roux-en-Y gastric bypass (RYGB) surgery on pancreatic function, skeletal muscle and hepatic insulin sensitivity, and gastrointestinal remodeling. An increased understanding of the current state of research in these areas can provide the basis for stimulating further research that would contribute to new treatment and management strategies for obesity and diabetes.
Literature
1.
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice. 2010;87(1):4–14. doi:10.​1016/​j.​diabres.​2009.​10.​007.CrossRefPubMed
2.
Kirwan JP, Solomon TP, Wojta DM, Staten MA, Holloszy JO. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2009;297(1):E151–6. doi:10.​1152/​ajpendo.​00210.​2009.CrossRefPubMedPubMedCentral
3.
Solomon TP, Haus JM, Kelly KR, Cook MD, Filion J, Rocco M, et al. A low-glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose-dependent insulinotropic polypeptide responses in obese, prediabetic humans. Am J Clin Nutr. 2010;92(6):1359–68. doi:10.​3945/​ajcn.​2010.​29771.CrossRefPubMedPubMedCentral
4.
Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304(16):1795–802. doi:10.​1001/​jama.​2010.​1505.CrossRefPubMedPubMedCentral
5.
Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11. doi:10.​1007/​s11695-009-0014-5.CrossRefPubMed
6.
Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85. doi:10.​1056/​NEJMoa1200111.CrossRefPubMed
7.
Leyba JL, Aulestia SN, Llopis SN. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the treatment of morbid obesity. A prospective study of 117 patients. Obes Surg. 2011;21(2):212–6. doi:10.​1007/​s11695-010-0279-8.CrossRefPubMed
8.
Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. doi:10.​1001/​jama.​292.​14.​1724.CrossRefPubMed
9.
Aminian A, Jamal M, Augustin T, Corcelles R, Kirwan JP, Schauer PR, et al. Failed surgical weight loss does not necessarily mean failed metabolic effects. Diabetes Technol Ther. 2015;17(10):682–4. doi:10.​1089/​dia.​2015.​0064.CrossRefPubMed
10.
Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR, Schauer PR, et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring). 2011;19(11):2235–40. doi:10.​1038/​oby.​2011.​107.CrossRef
11.
Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. doi:10.​1056/​NEJMoa1200225.CrossRefPubMedPubMedCentral
12.
Eickhoff H, Louro TM, Matafome PN, Vasconcelos F, Seica RM, Castro ESF. Amelioration of glycemic control by sleeve gastrectomy and gastric bypass in a lean animal model of type 2 diabetes: restoration of gut hormone profile. Obes Surg. 2014. doi:10.​1007/​s11695-014-1309-8.
13.
Stefater MA, Sandoval DA, Chambers AP, Wilson-Perez HE, Hofmann SM, Jandacek R, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology. 2011;141(3):939–49 e1-4. doi:10.​1053/​j.​gastro.​2011.​05.​008.CrossRefPubMedPubMedCentral
14.••
Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13. doi:10.​1056/​NEJMoa1401329. This manuscript provides an important update on the 3 year outcomes of the STAMPEDE trial. It provides further evidence to the metabolic efficiency of gastric bypass surgery and long term evidence for the use of gastric bypass in the treatment of type 2 diabetes.
15.
Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82. doi:10.​2337/​dc12-1596.CrossRefPubMedPubMedCentral
16.••
Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73. doi:10.​1016/​S0140-6736(15)00075-6. This manuscript provides an important update on the 5 year outcomes from a randomized control trial looking at gastric bypass surgery vs intensive medical therapy. It provides long term evidence for the use of gastric bypass in the treatment of type 2 diabetes.
17.
MacDonald Jr KG, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, et al. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1997;1(3):213–20. discussion 20.CrossRefPubMed
18.
Pories WJ, MacDonald Jr KG, Morgan EJ, Sinha MK, Dohm GL, Swanson MS, et al. Surgical treatment of obesity and its effect on diabetes: 10-y follow-up. Am J Clin Nutr. 1992;55(2 Suppl):582S–5S.PubMed
19.
Malin SK, Samat A, Wolski K, Abood B, Pothier CE, Bhatt DL, et al. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes (Lond). 2014;38(3):364–70. doi:10.​1038/​ijo.​2013.​196.CrossRef
20.
Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15. doi:10.​1210/​jc.​2004-0433.CrossRefPubMed
21.
Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93. doi:10.​1056/​NEJMoa035622.CrossRefPubMed
22.
Heneghan HM, Huang H, Kashyap SR, Gornik HL, McCullough AJ, Schauer PR, et al. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg Obes Relat Dis. 2013;9(1):100–7. doi:10.​1016/​j.​soard.​2011.​11.​018.CrossRefPubMedPubMedCentral
23.
Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61. doi:10.​1056/​NEJMoa066603.CrossRefPubMed
24.
Aminian A, Daigle CR, Romero-Talamas H, Kashyap SR, Kirwan JP, Brethauer SA, et al. Risk prediction of complications of metabolic syndrome before and 6 years after gastric bypass. Surg Obes Relat Dis. 2014;10(4):576–82. doi:10.​1016/​j.​soard.​2014.​01.​025.CrossRefPubMed
25.
Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41. doi:10.​1172/​JCI113338.CrossRefPubMedPubMedCentral
26.
Karam JH, Grodsky GM, Forsham PH. Excessive insulin response to glucose in obese subjects as measured by immunochemical assay. Diabetes. 1963;12:197–204.CrossRefPubMed
27.
Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53 Suppl 3:S16–21.CrossRefPubMed
28.
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.CrossRefPubMed
29.
Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell. 2013;153(4):747–58. doi:10.​1016/​j.​cell.​2013.​04.​008.CrossRefPubMedPubMedCentral
30.
Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. 1998;47(3):358–64.CrossRefPubMed
31.
Garber AJ. Incretin effects on beta-cell function, replication, and mass: the human perspective. Diabetes Care. 2011;34 Suppl 2:S258–63. doi:10.​2337/​dc11-s230.CrossRefPubMedPubMedCentral
32.
Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. Structural changes of pancreatic islets in genetically obese rats. Diabetologia. 1973;9(5):413–21.CrossRefPubMed
33.
Tokuyama Y, Sturis J, DePaoli AM, Takeda J, Stoffel M, Tang J, et al. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995;44(12):1447–57.CrossRefPubMed
34.
Itoh N, Okamoto H. Translational control of proinsulin synthesis by glucose. Nature. 1980;283(5742):100–2.CrossRefPubMed
35.
Lupi R, Mancarella R, Del Guerra S, Bugliani M, Del Prato S, Boggi U, et al. Effects of exendin-4 on islets from type 2 diabetes patients. Diabetes Obes Metab. 2008;10(6):515–9. doi:10.​1111/​j.​1463-1326.​2007.​00838.​x.CrossRefPubMed
36.
Chen C, Hosokawa H, Bumbalo LM, Leahy JL. Mechanism of compensatory hyperinsulinemia in normoglycemic insulin-resistant spontaneously hypertensive rats. Augmented enzymatic activity of glucokinase in beta-cells. J Clin Invest. 1994;94(1):399–404. doi:10.​1172/​JCI117335.CrossRefPubMedPubMedCentral
37.
Takamoto I, Terauchi Y, Kubota N, Ohsugi M, Ueki K, Kadowaki T. Crucial role of insulin receptor substrate-2 in compensatory beta-cell hyperplasia in response to high fat diet-induced insulin resistance. Diabetes Obes Metab. 2008;10 Suppl 4:147–56. doi:10.​1111/​j.​1463-1326.​2008.​00951.​x.CrossRefPubMed
38.
Liu YQ, Jetton TL, Leahy JL. beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem. 2002;277(42):39163–8. doi:10.​1074/​jbc.​M207157200.CrossRefPubMed
39.
Chen C, Bumbalo L, Leahy JL. Increased catalytic activity of glucokinase in isolated islets from hyperinsulinemic rats. Diabetes. 1994;43(5):684–9.CrossRefPubMed
40.
Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, et al. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest. 2007;117(1):246–57. doi:10.​1172/​JCI17645.CrossRefPubMedPubMedCentral
41.
Cockburn BN, Ostrega DM, Sturis J, Kubstrup C, Polonsky KS, Bell GI. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes. Diabetes. 1997;46(9):1434–9.CrossRefPubMed
42.
Kim MK, Kim HS, Lee IK, Park KG. Endoplasmic reticulum stress and insulin biosynthesis: a review. Exp Diabetes Res. 2012;2012:509437. doi:10.​1155/​2012/​509437.PubMedPubMedCentral
43.
Maechler P. Mitochondrial function and insulin secretion. Mol Cell Endocrinol. 2013;379(1–2):12–8. doi:10.​1016/​j.​mce.​2013.​06.​019.CrossRefPubMed
44.
Laferrere B. Diabetes remission after bariatric surgery: is it just the incretins? Int J Obes (Lond). 2011;35 Suppl 3:S22–5. doi:10.​1038/​ijo.​2011.​143.CrossRef
45.
Rubino F, R’Bibo SL, del Genio F, Mazumdar M, McGraw TE. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nature reviews Endocrinology. 2010;6(2):102–9. doi:10.​1038/​nrendo.​2009.​268.CrossRefPubMedPubMedCentral
46.
Gatmaitan P, Huang H, Talarico J, Moustarah F, Kashyap S, Kirwan JP, et al. Pancreatic islet isolation after gastric bypass in a rat model: technique and initial results for a promising research tool. Surg Obes Relat Dis. 2010;6(5):532–7. doi:10.​1016/​j.​soard.​2010.​05.​018.CrossRefPubMed
47.
Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15(9):1258–64.CrossRefPubMed
48.
Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288(2):E447–53.CrossRefPubMed
49.
Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000;141(12):4600–5. doi:10.​1210/​endo.​141.​12.​7806.CrossRefPubMed
50.
Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–58. doi:10.​1210/​en.​2003-0323.CrossRefPubMed
51.
Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47(5):806–15. doi:10.​1007/​s00125-004-1379-6.CrossRefPubMed
52.
Lindqvist A, Spegel P, Ekelund M, Garcia Vaz E, Pierzynowski S, Gomez MF, et al. Gastric bypass improves beta-cell function and increases beta-cell mass in a porcine model. Diabetes. 2014;63(5):1665–71. doi:10.​2337/​db13-0969.CrossRefPubMed
53.
Shimizu H, Eldar S, Heneghan HM, Dan O, Huang H, Schauer PR, et al. The effect of stimulation via gastrostomy tube in the gastric remnant on glucose metabolism after gastric bypass in obese diabetic rats. Surg Obes Relat Dis. 2013.
54.
Kirwan JP MS, Kullman EL, del Rincon JP, Scelsi AR, Brethauer SA, Kashyap SR, et al., editors. Early diabetes remission after gastric bypass surgery is explained by exclusion of the foregut. San Francisco: American Diabetes Association; 2014.
55.
Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of surgery. 2006;244(5):741–9. doi:10.​1097/​01.​sla.​0000224726.​61448.​1b.CrossRefPubMedPubMedCentral
56.
Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. doi:10.​1097/​01.​sla.​0000102989.​54824.​fc.CrossRefPubMedPubMedCentral
57.
Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Annals of surgery. 1987;206(3):316–23.CrossRefPubMedPubMedCentral
58.
le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Annals of surgery. 2006;243(1):108–14.CrossRefPubMedPubMedCentral
59.
Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–16. doi:10.​2337/​dc06-1549.CrossRefPubMedPubMedCentral
60.
Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3(6):597–601. doi:10.​1016/​j.​soard.​2007.​08.​004.CrossRefPubMedPubMedCentral
61.
Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, et al. Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond). 2010;34(3):462–71. doi:10.​1038/​ijo.​2009.​254.CrossRef
62.
Friedman JE, Dohm GL, Leggett-Frazier N, Elton CW, Tapscott EB, Pories WP, et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest. 1992;89(2):701–5. doi:10.​1172/​JCI115638.CrossRefPubMedPubMedCentral
63.
Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9. doi:10.​1001/​jama.​2013.​5835.CrossRefPubMedPubMedCentral
64.
Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6. doi:10.​1016/​j.​diabres.​2013.​04.​005.CrossRefPubMed
65.•
Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310(22):2416–25. doi:10.​1001/​jama.​2013.​280928. This study provides a thourough characterization of the long term effects of gastric bypass surgery.
66.
Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23. doi:10.​1001/​jama.​299.​3.​316.CrossRefPubMed
67.
Ding SA, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56. doi:10.​1210/​jc.​2015-1443.CrossRefPubMed
68.
Brethauer SA, Chand B, Schauer PR. Risks and benefits of bariatric surgery: current evidence. Cleve Clin J Med. 2006;73(11):993–1007.CrossRefPubMed
69.
Bojsen-Moller KN, Dirksen C, Jorgensen NB, Jacobsen SH, Serup AK, Albers PH, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes. 2014;63(5):1725–37. doi:10.​2337/​db13-1307.CrossRefPubMed
70.
Jazet IM, Schaart G, Gastaldelli A, Ferrannini E, Hesselink MK, Schrauwen P, et al. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia. 2008;51(2):309–19. doi:10.​1007/​s00125-007-0862-2.CrossRefPubMed
71.
Jazet IM, Pijl H, Frolich M, Romijn JA, Meinders AE. Two days of a very low calorie diet reduces endogenous glucose production in obese type 2 diabetic patients despite the withdrawal of blood glucose-lowering therapies including insulin. Metabolism. 2005;54(6):705–12. doi:10.​1016/​j.​metabol.​2004.​12.​015.CrossRefPubMed
72.•
Mosinski JD, Pagadala MR, Mulya A, Huang H, Dan O, Shimizu H, et al. Gastric bypass surgery is protective from high-fat diet induced nonalcoholic fatty liver disease and hepatic endoplasmic reticulum stress. Acta Physiol (Oxf). 2015. doi:10.​1111/​apha.​12640. This study provides evidence that RYGB surgery can protect liver health and function. This effect remains even in the face of a high fat diet.
73.•
Albers PH, Bojsen-Moller KN, Dirksen C, Serup AK, Kristensen DE, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R510–24. doi:10.​1152/​ajpregu.​00228.​2014. This study is one of the first to show insulin signaling data following gastric bypass surgery in humans.CrossRefPubMed
74.
Chen MZ, Hudson CA, Vincent EE, de Berker DA, May MT, Hers I, et al. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal. PLoS One. 2015;10(4):e0120084. doi:10.​1371/​journal.​pone.​0120084.CrossRefPubMedPubMedCentral
75.
Bonhomme S, Guijarro A, Keslacy S, Goncalves CG, Suzuki S, Chen C, et al. Gastric bypass up-regulates insulin signaling pathway. Nutrition. 2011;27(1):73–80. doi:10.​1016/​j.​nut.​2010.​08.​005.CrossRefPubMed
76.
Iesari S, le Roux CW, De Gaetano A, Manco M, Nanni G, Mingrone G. Twenty-four hour energy expenditure and skeletal muscle gene expression changes after bariatric surgery. J Clin Endocrinol Metab. 2013;98(2):E321–7. doi:10.​1210/​jc.​2012-2876.CrossRefPubMed
77.
Nadreau E, Baraboi ED, Samson P, Blouin A, Hould FS, Marceau P, et al. Effects of the biliopancreatic diversion on energy balance in the rat. Int J Obes (Lond). 2006;30(3):419–29. doi:10.​1038/​sj.​ijo.​0803166.CrossRef
78.
le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Annals of surgery. 2010;252(1):50–6. doi:10.​1097/​SLA.​0b013e3181d3d21f​.CrossRefPubMed
79.
Mumphrey MB, Patterson LM, Zheng H, Berthoud HR. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil. 2013;25(1):e70–9. doi:10.​1111/​nmo.​12034.CrossRefPubMedPubMedCentral
80.
Saeidi N, Nestoridi E, Kucharczyk J, Uygun MK, Yarmush ML, Stylopoulos N. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes (Lond). 2012;36(11):1396–402. doi:10.​1038/​ijo.​2012.​167.CrossRef
81.
Evrard S, Aprahamian M, Hoeltzel A, Vasilescu M, Marescaux J, Damge C. Trophic and enzymatic adaptation of the intestine to biliopancreatic bypass in the rat. Int J Obes Relat Metab Disord. 1993;17(9):541–7.PubMed
82.
Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S, Kucharczyk J, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(6144):406–10. doi:10.​1126/​science.​1235103.CrossRefPubMedPubMedCentral
83.
Cavin JB, Couvelard A, Lebtahi R, Ducroc R, Arapis K, Voitellier E, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2015. doi:10.​1053/​j.​gastro.​2015.​10.​009.PubMed
84.
Nguyen NQ, Debreceni TL, Bambrick JE, Chia B, Deane AM, Wittert G, et al. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption. Obesity (Silver Spring). 2014;22(10):2164–71. doi:10.​1002/​oby.​20829.CrossRef
85.
de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell metabolism. 2013;17(5):657–69. doi:10.​1016/​j.​cmet.​2013.​03.​013.CrossRefPubMedPubMedCentral
86.
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal. 2008;20(12):2180–97. doi:10.​1016/​j.​cellsig.​2008.​06.​014.CrossRefPubMed
87.
Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Progress in lipid research. 2010;49(2):171–85. doi:10.​1016/​j.​plipres.​2009.​11.​001.CrossRefPubMed
88.
Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Digestive diseases. 2010;28(1):220–4. doi:10.​1159/​000282091.CrossRefPubMed
89.•
Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12. doi:10.​1210/​jc.​2012-3736. This study provides evidence that RYGB surgery significantly increases circulating bile acids and bile acid signaling when compared to LAGB.
90.
Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. doi:10.​1038/​oby.​2009.​102.CrossRef
91.
Werling M, Vincent RP, Cross GF, Marschall HU, Fandriks L, Lonroth H, et al. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand J Gastroenterol. 2013;48(11):1257–64. doi:10.​3109/​00365521.​2013.​833647.CrossRefPubMed
92.
Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–64. doi:10.​2337/​dc12-2255.CrossRefPubMedPubMedCentral
93.
Ashrafian H, Li JV, Spagou K, Harling L, Masson P, Darzi A, et al. Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res. 2014;13(2):570–80. doi:10.​1021/​pr400748f.CrossRefPubMed
94.
Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60(9):1214–23. doi:10.​1136/​gut.​2010.​234708.CrossRefPubMedPubMedCentral
95.
Kumar S, Lau R, Hall C, Palaia T, Brathwaite CE, Ragolia L. Bile acid elevation after Roux-en-Y gastric bypass is associated with cardio-protective effect in Zucker Diabetic Fatty rats. Int J Surg. 2015;24(Pt A):70–4. doi:10.​1016/​j.​ijsu.​2015.​11.​010.CrossRefPubMed
96.
Corcelles R, Daigle CR, Schauer PR. MANAGEMENT OF ENDOCRINE DISEASE: Metabolic effects of bariatric surgery. Eur J Endocrinol. 2016;174(1):R19–28. doi:10.​1530/​EJE-15-0533.CrossRefPubMed
97.
Kir S, Kliewer SA, Mangelsdorf DJ. Roles of FGF19 in liver metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:139–44. doi:10.​1101/​sqb.​2011.​76.​010710.CrossRefPubMed
98.
Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9. doi:10.​1210/​en.​2011-2145.CrossRefPubMedPubMedCentral
99.
Alam M, Agenor KK, Wang G, Reilly D, Colarusso A, Vincent R, et al., editors. Raised plasma bile acids concentrations are related to change of GLP-1 two years after gastric bypass surgery (GBP) in patients with type 2 diabetes. Obesity. 2011. NATURE PUBLISHING GROUP 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013–1917 USA.
100.
Schittenhelm B, Wagner R, Kahny V, Peter A, Krippeit-Drews P, Dufer M, et al. Role of FXR in beta-cells of lean and obese mice. Endocrinology. 2015;156(4):1263–71. doi:10.​1210/​en.​2014-1751.CrossRefPubMed
101.
Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. doi:10.​1038/​nature13135.CrossRefPubMedPubMedCentral
102.
Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond). 2015;39(11):1565–74. doi:10.​1038/​ijo.​2015.​115.CrossRef
103.
del Rincon MD J-P, Malin SK, Emily L-K, Madison R, Amanda S, Takhar K, et al., editors. Taurocholic acid increases in oral vs. gastrostomy tube mixed meal feeding early after Roux-n-Y gastric bypass surgery in adults with type 2 diabetes. Boston: Obesity Week; 2015.
104.
Cadavez L, Montane J, Alcarraz-Vizan G, Visa M, Vidal-Fabrega L, Servitja JM, et al. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression. PLoS One. 2014;9(7):e101797. doi:10.​1371/​journal.​pone.​0101797.CrossRefPubMedPubMedCentral
105.
Zhu Q, Zhong JJ, Jin JF, Yin XM, Miao H. Tauroursodeoxycholate, a chemical chaperone, prevents palmitate-induced apoptosis in pancreatic beta-cells by reducing ER stress. Exp Clin Endocrinol Diabetes. 2013;121(1):43–7. doi:10.​1055/​s-0032-1321787.PubMed
106.
Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci Transl Med. 2013;5(211):211ra156. doi:10.​1126/​scitranslmed.​3006534.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »