Skip to main content
Top

18-07-2018 | Mental health | Review | Article

Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications

Journal: Nature Reviews Endocrinology

Authors: Geert Jan Biessels, Florin Despa

Publisher: Nature Publishing Group UK

Abstract

Cognitive dysfunction is increasingly recognized as an important comorbidity of diabetes mellitus. Different stages of diabetes-associated cognitive dysfunction exist, each with different cognitive features, affected age groups and prognoses and probably with different underlying mechanisms. Relatively subtle, slowly progressive cognitive decrements occur in all age groups. More severe stages, particularly mild cognitive impairment and dementia, with progressive deficits, occur primarily in older individuals (>65 years of age). Patients in the latter group are the most relevant for patient management and are the focus of this Review. Here, we review the evolving insights from studies on risk factors, brain imaging and neuropathology, which provide important clues on mechanisms of both the subtle cognitive decrements and the more severe stages of cognitive dysfunction. In the majority of patients, the cognitive phenotype is probably defined by multiple aetiologies. Although both the risk of clinically diagnosed Alzheimer disease and that of vascular dementia is increased in association with diabetes, the cerebral burden of the prototypical pathologies of Alzheimer disease (such as neurofibrillary tangles and neuritic plaques) is not. A major challenge for researchers is to pinpoint from the spectrum of diabetes-related disease processes those that affect the brain and contribute to development of dementia beyond the pathologies of Alzheimer disease. Observations from experimental models can help to meet that challenge, but this requires further improving the synergy between experimental and clinical scientists. The development of targeted treatment and preventive strategies will therefore depend on these translational efforts.
Glossary
Cognitive dysfunction
Any change from normal cognitive functioning. May range from subtle to severe.
Cognitive decrements
Subtle cognitive dysfunction not severe enough to meet formal neuropsychological criteria for cognitive impairment.
Cognitive impairment
Cognitive dysfunction severe enough to be classified as ‘abnormal’ or ‘impaired’ on the basis of neuropsychological test results (mostly 1.5–2 s.d. below normative mean). Entails both mild cognitive impairment and dementia.
Cognitive domains
Distinct types of cognitive function supporting different aspects of behaviour. Domains include intelligence, attention, language, memory, executive functions (including cognitive flexibility), visual–spatial skills and psychomotor efficiency and may be differentially affected by disease.
Cohen’s d effect sizes
Cohen’s d is defined as the difference between two group means divided by the pooled standard deviation.
Amnesic MCI
Mild cognitive impairment (MCI) with the domain memory being affected. Regarded as the prototypical form of MCI preceding Alzheimer dementia.
Nonamnesic MCI
MCI with the domain memory being intact.
Lacunes
Round or ovoid, subcortical, fluid-filled cavities (signal on MRI similar to cerebrospinal fluid) between 3 mm and ~15 mm in diameter that are consistent with a previous acute small subcortical infarct or haemorrhage in the territory of one perforating arteriole.
White matter hyperintensities
Signal abnormality of variable size in the white matter that is hyperintense on T2-weighted MRI images such as fluid-attenuated inversion recovery, without cavitation (signal different from cerebrospinal fluid), often due to vascular injury but may have other causes.
Perivascular spaces
Fluid-filled spaces that follow the typical course of a vessel as it goes through grey or white matter. The spaces have a signal intensity similar to that of cerebrospinal fluid on all MRI sequences49.
Cerebral microbleeds
Small (generally 2–5 mm in diameter, but sometimes up to 10 mm) areas of signal void with associated blooming seen on T2*-weighted MRI or other sequences that are sensitive to susceptibility effects, mostly representing a haemosiderin remnant after a small previous haemorrhage.
Microinfarcts
Small lesions of presumed ischaemic origin, detectable with microscopic examination of brain autopsy material but also detectable in vivo with dedicated MRI protocols.
Neurovascular uncoupling
Neurovascular coupling is the mechanism that links local changes in neural activity and cerebral blood flow involving the so-called neurovascular unit. Neurovascular uncoupling is a disturbance of this mechanism.
Literature
1.
International Diabetes Federation. IDF Diabetes Atlas, Eighth edition, 2017, http://​www.​diabetesatlas.​org/​resources/​2017-atlas.​html (2017).
2.
Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).CrossRefPubMed
3.
Prince, M. et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9, 63–75 (2013).CrossRefPubMed
4.
Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C. & Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5, 64–74 (2006).CrossRefPubMed
5.
Koekkoek, P. S., Kappelle, L. J., van den Berg, E., Rutten, G. E. & Biessels, G. J. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 14, 329–340 (2015).CrossRefPubMed
6.
Gudala, K., Bansal, D., Schifano, F. & Bhansali, A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J. Diabetes Investig. 4, 640–650 (2013).PubMedPubMedCentralCrossRef
7.
Zhang, J. et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 124, 41–47 (2017).CrossRefPubMed
8.
Biessels, G. J., Deary, I. J. & Ryan, C. M. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 7, 184–190 (2008).CrossRefPubMed
9.
Ryan, C. M., van Duinkerken, E. & Rosano, C. Neurocognitive consequences of diabetes. Am. Psychol. 71, 563–576 (2016).CrossRefPubMed
10.
Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J. & Kessels, R. P. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28, 726–735 (2005).PubMedCrossRef
11.
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 356, 1842–1852 (2007).CrossRef
12.
Nunley, K. A. et al. Clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes. Diabetes Care 38, 1768–1776 (2015).PubMedPubMedCentralCrossRef
13.
Monette, M. C., Baird, A. & Jackson, D. L. A meta-analysis of cognitive functioning in nondemented adults with type 2 diabetes mellitus. Can. J. Diabetes 38, 401–408 (2014).CrossRefPubMed
14.
Palta, P., Schneider, A. L., Biessels, G. J., Touradji, P. & Hill-Briggs, F. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J. Int. Neuropsychol. Soc. 20, 278–291 (2014).PubMedPubMedCentralCrossRef
15.
Biessels, G. J., Strachan, M. W., Visseren, F. L., Kappelle, L. J. & Whitmer, R. A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2, 246–255 (2014).CrossRefPubMed
16.
Bangen, K. J. et al. Relationship between type 2 diabetes mellitus and cognitive change in a multi9ethnic elderly cohort. J. Am. Geriatr. Soc. 63, 1075–1083 (2015).PubMedPubMedCentralCrossRef
17.
Pappas, C., Andel, R., Infurna, F. J. & Seetharaman, S. Glycated haemoglobin (HbA1c), diabetes and trajectories of change in episodic memory performance. J. Epidemiol. Commun. Health 71, 115–120 (2017).CrossRef
18.
Yaffe, K. et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch. Neurol. 69, 1170–1175 (2012).PubMedPubMedCentralCrossRef
19.
Petersen, R. C. MCI as a diagnostic entity. J. Intern. Med. 256, 183–194 (2004).PubMed
20.
Petersen, R. C. et al. Practice guideline update summary: MCI: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90, 126–135 (2018).CrossRefPubMedPubMedCentral
21.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth edition (DSM-IV) (American Psychiatric Association, Washington DC, 1994).
22.
Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).CrossRefPubMed
23.
Dubois, B. et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 9, 1118–1127 (2010).PubMedCrossRef
24.
Luchsinger, J. A. et al. Relation of diabetes to MCI. Arch. Neurol. 64, 570–575 (2007).PubMedCrossRef
25.
Roberts, R. O. et al. Association of diabetes with amnestic and nonamnestic MCI. Alzheimers Dement. 10, 18–26 (2014).PubMedCrossRef
26.
Cooper, C., Sommerlad, A., Lyketsos, C. G. & Livingston, G. Modifiable predictors of dementia in MCI: a systematic review and meta-analysis. Am. J. Psychiatry 172, 323–334 (2015).PubMedCrossRef
27.
Li, J. Q. et al. Risk factors for predicting progression from MCI to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 87, 476–484 (2016).PubMedCrossRef
28.
Chatterjee, S. et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39, 300–307 (2016).PubMedCrossRef
29.
Haroon, N. N. et al. Risk of dementia in seniors with newly diagnosed diabetes: a population-based study. Diabetes Care 38, 1868–1875 (2015).PubMedCrossRef
30.
Crane, P. K. et al. Glucose levels and risk of dementia. N. Engl. J. Med. 369, 540–548 (2013).PubMedPubMedCentralCrossRef
31.
Exalto, L. G. et al. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol. 1, 183–190 (2013).PubMedPubMedCentralCrossRef
32.
Brady, C. C. et al. Obese adolescents with type 2 diabetes perform worse than controls on cognitive and behavioral assessments. Pediatr. Diabetes 18, 297–303 (2017).PubMedCrossRef
33.
Yates, K. F., Sweat, V., Yau, P. L., Turchiano, M. M. & Convit, A. Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler. Thromb. Vasc. Biol. 32, 2060–2067 (2012).PubMedPubMedCentralCrossRef
34.
van den Berg, E., de Craen, A. J., Biessels, G. J., Gussekloo, J. & Westendorp, R. G. The impact of diabetes mellitus on cognitive decline in the oldest of the old: a prospective population-based study. Diabetologia 49, 2015–2023 (2006).PubMedCrossRef
35.
Kadohara, K., Sato, I. & Kawakami, K. Diabetes mellitus and risk of early-onset Alzheimer’s disease: a population-based case-control study. Eur. J. Neurol. 24, 944–949 (2017).PubMedCrossRef
36.
Heath, C. A., Mercer, S. W. & Guthrie, B. Vascular comorbidities in younger people with dementia: a cross-sectional population-based study of 616 245 middle-aged people in Scotland. J. Neurol. Neurosurg. Psychiatry 86, 959–964 (2015).PubMedCrossRef
37.
Abner, E. L. et al. Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimers Dement. 12, 882–889 (2016).PubMedPubMedCentralCrossRef
38.
Feinkohl, I., Price, J. F., Strachan, M. W. & Frier, B. M. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res. Ther. 7, 46 (2015).PubMedPubMedCentralCrossRef
39.
Geijselaers, S. L. C., Sep, S. J. S., Stehouwer, C. D. A. & Biessels, G. J. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol. 3, 75–89 (2015).CrossRefPubMed
40.
Rawlings, A. M. et al. Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care 40, 879–886 (2017).PubMedPubMedCentralCrossRef
41.
Patrone, C., Eriksson, O. & Lindholm, D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol. 2, 256–262 (2014).PubMedCrossRef
42.
Orkaby, A. R., Cho, K., Cormack, J., Gagnon, D. R. & Driver, J. A. Metformin versus sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology 89, 1877–1885 (2017).PubMedPubMedCentralCrossRef
43.
Areosa Sastre, A., Vernooij, R. W., Gonzalez-Colaco Harmand, M. & Martinez, G. Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst. Rev. 6, CD003804 (2017).PubMed
44.
de Galan, B. E. et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia 52, 2328–2336 (2009).CrossRefPubMed
45.
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014).CrossRefPubMed
46.
de Bruijn, R. F. et al. The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study. BMC. Med. 13, 132 (2015).PubMedPubMedCentralCrossRef
47.
Biessels, G. J. & Reijmer, Y. D. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63, 2244–2252 (2014).CrossRefPubMed
48.
Moran, C. et al. Neuroimaging and its relevance to understanding pathways linking diabetes and cognitive dysfunction. J. Alzheimers Dis. 59, 405–419 (2017).PubMedCrossRef
49.
Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).PubMedPubMedCentralCrossRef
50.
Wardlaw, J. M., Valdes Hernandez, M. C. & Munoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4, 001140 (2015).CrossRefPubMed
51.
Qiu, C. et al. Diabetes, markers of brain pathology and cognitive function: the Age, Gene/Environment Susceptibility-Reykjavik Study. Ann. Neurol. 75, 138–146 (2014).PubMedPubMedCentralCrossRef
52.
Caunca, M. R. et al. Cerebral microbleeds, vascular risk factors, and magnetic resonance imaging markers: the Northern Manhattan Study. J. Am. Heart Assoc. 5, e003477 (2016).PubMedPubMedCentralCrossRef
53.
Gutierrez, J., Rundek, T., Ekind, M. S., Sacco, R. L. & Wright, C. B. Perivascular spaces are associated with atherosclerosis: an insight from the Northern Manhattan Study. AJNR Am. J. Neuroradiol 34, 1711–1716 A3498 (2013).PubMedPubMedCentralCrossRef
54.
Bouvy, W. H. et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors. J. Cereb. Blood Flow Metab. 36, 1708–1717 (2016).PubMedPubMedCentralCrossRef
55.
van Veluw, S. J. et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 16, 730–740 (2017).PubMedPubMedCentralCrossRef
56.
Pruzin, J. J. et al. Diabetes, hemoglobin A1C, and regional Alzheimer disease and infarct pathology. Alzheimer Dis. Assoc. Disord. 31, 41–47 (2017).PubMedPubMedCentralCrossRef
57.
Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).CrossRefPubMed
58.
Nelson, P. T. et al. Human cerebral neuropathology of type 2 diabetes mellitus. Biochim. Biophys. Acta 1792, 454–469 (2009).PubMedCrossRef
59.
Ly, H. et al. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann. Neurol. 82, 208–222 (2017).PubMedPubMedCentralCrossRef
60.
Brundel, M., Kappelle, L. J. & Biessels, G. J. Brain imaging in type 2 diabetes. Eur. Neuropsychopharmacol. 24, 1967–1981 (2014).CrossRefPubMed
61.
Arvanitakis, Z. et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67, 1960–1965 (2006).CrossRefPubMed
62.
Dos Santos Matioli, M. N. P. et al. Diabetes is not associated with Alzheimer’s disease neuropathology. J. Alzheimers Dis. 60, 1035–1043 (2017).CrossRefPubMed
63.
Gottesman, R. F. et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017).PubMedPubMedCentralCrossRef
64.
Moran, C. et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85, 1123–1130 (2015).PubMedPubMedCentralCrossRef
65.
Vemuri, P. et al. Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Ann. Neurol. 82, 706–718 (2017).PubMedPubMedCentralCrossRef
66.
Biessels, G. J. & Reagan, L. P. Hippocampal insulin resistance and cognitive dysfunction. Nat. Rev. Neurosci. 16, 660–671 (2015).CrossRefPubMed
67.
Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).PubMedPubMedCentralCrossRef
68.
Moran, C. et al. Type 2 diabetes, skin autofluorescence, and brain atrophy. Diabetes 64, 279–283 (2015).CrossRefPubMed
69.
Janelidze, S. et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 51, 104–112 (2017).PubMedPubMedCentralCrossRef
70.
Biessels, G. J. & Gispen, W. H. The impact of diabetes on cognition: What can be learned from rodent models? Neurobiol. Aging 26 (Suppl. 1), 36–41 (2005).CrossRefPubMed
71.
Clodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V. & Jope, R. S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320–3325 (2006).PubMedCrossRef
72.
de la Monte, S. M., Tong, M., Lester-Coll, N., Plater, M. Jr & Wands, J. R. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J. Alzheimers Dis. 10, 89–109 (2006).CrossRefPubMed
73.
Planel, E. et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci. 27, 13635–13648 (2007).CrossRefPubMedPubMedCentral
74.
Kim, B., Backus, C., Oh, S., Hayes, J. M. & Feldman, E. L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301 (2009).PubMedPubMedCentralCrossRef
75.
Li, Z. G., Zhang, W. & Sima, A. A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56, 1817–1824 (2007).CrossRefPubMed
76.
Puig, K. L., Floden, A. M., Adhikari, R., Golovko, M. Y. & Combs, C. K. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLOS ONE 7, e30378 (2012).PubMedPubMedCentralCrossRef
77.
Liu, Y. et al. Impaired amyloid beta-degrading enzymes in brain of streptozotocin-induced diabetic rats. J. Endocrinol. Invest. 34, 26–31 (2011).CrossRefPubMed
78.
Son, S. M. et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 8, 1842–1844 (2012).PubMedPubMedCentralCrossRef
79.
Wang, J. Q. et al. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J. Diabetes Res. 2014, 796840 (2014).PubMedPubMedCentral
80.
Heyward, F. D. et al. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol. Learn. Mem. 98, 25–32 (2012).PubMedPubMedCentralCrossRef
81.
Ramos-Rodriguez, J. J. et al. Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 38, 2462–2475 (2013).CrossRefPubMed
82.
Takeda, S. et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl Acad. Sci. USA 107, 7036–7041 (2010).CrossRefPubMedPubMedCentral
83.
Niedowicz, D. M. et al. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated beta-amyloid deposition in a novel murine model of mixed or vascular dementia. Acta Neuropathol. Commun. 2, 64 (2014).PubMedPubMedCentralCrossRef
84.
Ramos-Rodriguez, J. J. et al. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. Psychoneuroendocrinology 48, 123–135 (2014).CrossRefPubMed
85.
Devi, L., Alldred, M. J., Ginsberg, S. D. & Ohno, M. Mechanisms underlying insulin deficiency-induced acceleration of beta-amyloidosis in a mouse model of Alzheimer’s disease. PLOS ONE 7, e32792 (2012).PubMedPubMedCentralCrossRef
86.
Gao, C., Liu, Y., Li, L. & Holscher, C. New animal models of Alzheimer’s disease that display insulin desensitization in the brain. Rev. Neurosci. 24, 607–615 (2013).PubMed
87.
Bell, G. A. & Fadool, D. A. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiol. Behav. 174, 104–113 (2017).PubMedPubMedCentralCrossRef
88.
Marks, D. R., Tucker, K., Cavallin, M. A., Mast, T. G. & Fadool, D. A. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J. Neurosci. 29, 6734–6751 (2009).PubMedPubMedCentralCrossRef
89.
Srodulski, S. et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener. 9, 30 (2014).PubMedPubMedCentralCrossRef
90.
Beckman, J. A. & Creager, M. A. Vascular complications of diabetes. Circ. Res. 118, 1771–1785 (2016).PubMedCrossRef
91.
Basta, G., Schmidt, A. M. & De Caterina, R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 63, 582–592 (2004).PubMedCrossRef
92.
Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).PubMedCrossRef
93.
Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).CrossRefPubMed
94.
Viswanathan, A., Rocca, W. A. & Tzourio, C. Vascular risk factors and dementia: how to move forward? Neurology 72, 368–374 (2009).PubMedPubMedCentralCrossRef
95.
Ilaiwy, A. et al. Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo. Metabolomics 12, https://​doi.​org/​10.​1007/​s11306-016-1022-9 (2016).
96.
Mattson, M. P. & Rydel, R. E. Alzheimer’s disease. Amyloid ox-tox transducers. Nature 382, 674–675 (1996).PubMedCrossRef
97.
Verma, N. et al. Intraneuronal amylin deposition, peroxidative membrane injury and increased IL-1beta synthesis in brains of Alzheimer’s disease patients with type-2 diabetes and in diabetic HIP rats. J. Alzheimers Dis. 53, 259–272 (2016).PubMedPubMedCentralCrossRef
98.
Neth, B. J. & Craft, S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front. Aging Neurosci. 9, 345 (2017).PubMedPubMedCentralCrossRef
99.
Thibault, O. et al. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur. J. Pharmacol. 719, 34–43 (2013).PubMedCrossRef
100.
Erickson, J. R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372–376 (2013).PubMedPubMedCentralCrossRef
101.
Ashpole, N. M. & Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell Neurosci. 46, 720–730 (2011).PubMedCrossRef
102.
Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795–826 (2011).PubMedCrossRef
103.
Gong, W. et al. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int. 72, 213–218 (2007).PubMedCrossRef
104.
Despa, S. et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ. Res. 110, 598–608 (2012).PubMedPubMedCentralCrossRef
105.
Jackson, K. et al. Amylin deposition in the brain: a second amyloid in Alzheimer’s disease? Ann. Neurol. 74, 517–526 (2013).PubMedCrossRef
106.
Oskarsson, M. E. et al. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am. J. Pathol. 185, 834–846 (2015).PubMedCrossRef
107.
Schultz, N., Byman, E., Fex, M. & Wennstrom, M. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab. 37, 1470–1482 (2017).PubMedCrossRef
108.
Fawver, J. N. et al. Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer’s disease. Curr. Alzheimer Res. 11, 928–940 (2014).PubMedCrossRef
109.
Roostaei, T. et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol. Psychiatry 22, 287–295 (2017).PubMedCrossRef
110.
Matveyenko, A. V. & Butler, P. C. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 47, 225–233 (2006).CrossRefPubMed
111.
Moreno-Gonzalez, I. et al. Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol. Psychiatry 22, 1327–1334 (2017).PubMedPubMedCentralCrossRef
112.
Wang, Z. et al. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J. Neurosci. 29, 10788–10801 (2009).PubMedPubMedCentralCrossRef
113.
Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C. & Selkoe, D. J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev. 3, 15 (2008).PubMedPubMedCentralCrossRef
114.
Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A. & Schneider, J. A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943 (2016).PubMedPubMedCentralCrossRef
115.
International Diabetes Federation. Global Guideline for Managing Older People with Type 2 Diabetes https://​www.​idf.​org/​e-library/​guidelines/​78-global-guideline-for-managing-older-people-with-type-2-diabetes.​html (2013).
116.
Japan Diabetes Society (JDS)/Japan Geriatrics Society (JGS) Joint Committee on Improving Care for Elderly Patients with Diabetes. Committee Report: Glycemic targets for elderly patients with diabetes. J. Diabetes Investig. 8, 126–128 (2017).CrossRef
117.
American Diabetes Association. Standards of Medical Care in Diabetes-2017. Diabetes Care 40, S1–S142 (2017).CrossRef
118.
Munshi, M. N. Cognitive dysfunction in older adults with diabetes: what a clinician needs to know. Diabetes Care 40, 461–467 (2017).CrossRefPubMed
119.
Feil, D. G. et al. Risk of hypoglycemia in older veterans with dementia and cognitive impairment: implications for practice and policy. J. Am. Geriatr. Soc. 59, 2263–2272 (2011).CrossRefPubMed
120.
Smith, E. E. et al. Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48, e44–e71 (2017).PubMed
121.
American Diabetes Association. Standards of Medical Care in Diabetes-2017: Section 11. Older Adults. Diabetes Care 40, S99–S104 (2017).CrossRef
122.
Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »