Skip to main content
Top

20-05-2016 | Heart failure | Article

Association of HbA1c with hospitalization and mortality among patients with heart failure and diabetes

Journal: BMC Cardiovascular Disorders

Authors: Saul Blecker, Hannah Park, Stuart D. Katz

Publisher: BioMed Central

Abstract

Background

Comorbid diabetes is common in heart failure and associated with increased hospitalization and mortality. Nonetheless, the association between glycemic control and outcomes among patients with heart failure and diabetes remains poorly characterized, particularly among low income and minority patients.

Methods

We performed a retrospective cohort study of outpatients with heart failure and diabetes in the New York City Health and Hospitals Corporation, the largest municipal health care system in the United States. Cox proportional hazard models were used to measure the association between HbA1c levels and outcomes of all-cause hospitalization, heart failure hospitalization, and mortality.

Results

Of 4723 patients with heart failure and diabetes, 42.6 % were black, 30.5 % were Hispanic/Latino, 31.4 % were Medicaid beneficiaries and 22.9 % were uninsured. As compared to patients with an HbA1c of 8.0–8.9 %, patients with an HbA1c of <6.5, 6.5–6.9, 7.0–7.9, and ≥9.0 % had an adjusted hazard ratio (aHR) (95 % CI) for all-cause hospitalization of 1.03 (0.90–1.17), 1.05 (0.91–1.22), 1.03 (0.90–1.17), and 1.13 (1.00–1.28), respectively. An HbA1c ≥ 9.0 % was also associated with an increased risk of heart failure hospitalization (aHR 1.33; 95 % CI 1.11–1.59) and a non-significant increased risk in mortality (aHR 1.20; 95 % CI 0.99–1.45) when compared to HbA1c of 8.0–8.9 %.

Conclusions

Among a cohort of primarily minority and low income patients with heart failure and diabetes, an increased risk of hospitalization was observed only for an HbA1c greater than 9 %.
Literature
1.
Adams Jr KF, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209–16.CrossRefPubMed
2.
Greenberg BH, Abraham WT, Albert NM, Chiswell K, Clare R, Stough WG, et al. Influence of diabetes on characteristics and outcomes in patients hospitalized with heart failure: a report from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2007;154(2):277. e1-8.CrossRefPubMed
3.
Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure-associated hospitalizations in the United States. J Am Coll Cardiol. 2013;61(12):1259–67.CrossRefPubMed
4.
From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119(7):591–9.CrossRefPubMed
5.
Kamalesh M, Cleophas TJ. Heart failure due to systolic dysfunction and mortality in diabetes: pooled analysis of 39,505 subjects. J Card Fail. 2009;15(4):305–9.CrossRefPubMed
6.
Bahrami H, Kronmal R, Bluemke DA, Olson J, Shea S, Liu K, et al. Differences in the incidence of congestive heart failure by ethnicity: the multi-ethnic study of atherosclerosis. Arch Intern Med. 2008;168(19):2138–45.CrossRefPubMedPubMedCentral
7.
Foraker RE, Rose KM, Suchindran CM, Chang PP, McNeill AM, Rosamond WD. Socioeconomic status, Medicaid coverage, clinical comorbidity, and rehospitalization or death after an incident heart failure hospitalization: Atherosclerosis Risk in Communities cohort (1987 to 2004). Circ Heart Fail. 2011;4(3):308–16.CrossRefPubMedPubMedCentral
8.
Link CL, McKinlay JB. Disparities in the prevalence of diabetes: is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethn Dis. 2009;19(3):288–92.PubMedPubMedCentral
9.
Robbins JM, Vaccarino V, Zhang H, Kasl SV. Socioeconomic status and type 2 diabetes in African American and non-Hispanic white women and men: evidence from the Third National Health and Nutrition Examination Survey. Am J Public Health. 2001;91(1):76–83.CrossRefPubMedPubMedCentral
10.
Winkleby MA, Kraemer HC, Ahn DK, Varady AN. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988–1994. JAMA. 1998;280(4):356–62.CrossRefPubMed
11.
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.CrossRefPubMed
12.
American DA. Standards of medical care in diabetes--2014. Diabetes Care. 2014;37 Suppl 1:S14–80.CrossRef
13.
Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010;59(8):2020–6.CrossRefPubMedPubMedCentral
14.
Pazin-Filho A, Kottgen A, Bertoni AG, Russell SD, Selvin E, Rosamond WD, et al. HbA 1c as a risk factor for heart failure in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia. 2008;51(12):2197–204.CrossRefPubMed
15.
Romero SP, Garcia-Egido A, Escobar MA, Andrey JL, Corzo R, Perez V, et al. Impact of new-onset diabetes mellitus and glycemic control on the prognosis of heart failure patients: a propensity-matched study in the community. Int J Cardiol. 2012;167:1206.CrossRefPubMed
16.
van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care. 2010;33(9):2084–9.CrossRefPubMedPubMedCentral
17.
Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefPubMed
18.
Gerstein HC, Miller ME, Byington RP, Goff Jr DC, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.CrossRefPubMed
19.
Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.CrossRefPubMed
20.
Rose BD, Rennke HG. Renal pathophysiology - the essentials Philadelphia: Lippincott Williams & Wilkins. 1994.
21.
Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol. 2009;54(5):422–8.CrossRefPubMedPubMedCentral
22.
Eshaghian S, Horwich TB, Fonarow GC. An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure. Am Heart J. 2006;151(1):91.CrossRefPubMed
23.
Tomova GS, Nimbal V, Horwich TB. Relation between hemoglobin a(1c) and outcomes in heart failure patients with and without diabetes mellitus. Am J Cardiol. 2012;109(12):1767–73.CrossRefPubMedPubMedCentral
24.
Gerstein HC, Swedberg K, Carlsson J, McMurray JJ, Michelson EL, Olofsson B, et al. The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch Intern Med. 2008;168(15):1699–704.CrossRefPubMed
25.
Capponi L, Trinh-Shevrin C, Cronstein BN, Hochman JS. A public-private partnership: the New York University-Health and Hospitals Corporation Clinical and Translational Science Institute. Clin Transl Sci. 2012;5(3):223–5.CrossRefPubMedPubMedCentral
26.
Blecker S, Herbert R, Brancati FL. Comorbid diabetes and end-of-life expenditures among medicare beneficiaries with heart failure. J Card Fail. 2012;18(1):41–6.CrossRefPubMedPubMedCentral
27.
Bonow RO, Ganiats TG, Beam CT, Blake K, Casey Jr DE, Goodlin SJ, et al. ACCF/AHA/AMA-PCPI 2011 performance measures for adults with heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association-Physician Consortium for Performance Improvement. Circulation. 2012;125(19):2382–401.CrossRefPubMed
28.
Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9.CrossRefPubMed
29.
Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care. 2008;14(1):15–23.PubMedPubMedCentral
30.
McGilchrist CA, Aisbett CW. Regression with frailty in survival analysis. Biometrics. 1991;47(2):461–6.CrossRefPubMed
31.
Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362(9):800–11.CrossRefPubMedPubMedCentral
32.
Nichols GA, Joshua-Gotlib S, Parasuraman S. Glycemic control and risk of cardiovascular disease hospitalization and all-cause mortality. J Am Coll Cardiol. 2013;62(2):121–7.CrossRefPubMed
33.
Zoungas S, Chalmers J, Ninomiya T, Li Q, Cooper ME, Colagiuri S, et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia. 2012;55(3):636–43.CrossRefPubMed
34.
Eeg-Olofsson K, Cederholm J, Nilsson PM, Zethelius B, Svensson AM, Gudbjornsdottir S, et al. New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J Intern Med. 2010;268(5):471–82.CrossRefPubMed
35.
Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care. 2007;30(10):2453–7.CrossRefPubMedPubMedCentral
36.
Selvin E, Rawlings AM, Bergenstal RM, Coresh J, Brancati FL. No racial differences in the association of glycated hemoglobin with kidney disease and cardiovascular outcomes. Diabetes Care. 2013;36(10):2995–3001.CrossRefPubMedPubMedCentral
37.
Wolffenbuttel BH, Herman WH, Gross JL, Dharmalingam M, Jiang HH, Hardin DS. Ethnic differences in glycemic markers in patients with type 2 diabetes. Diabetes Care. 2013;36(10):2931–6.CrossRefPubMedPubMedCentral
38.
Tsugawa Y, Mukamal KJ, Davis RB, Taylor WC, Wee CC. Should the hemoglobin A1c diagnostic cutoff differ between blacks and whites? A cross-sectional study. Ann Intern Med. 2012;157(3):153–9.CrossRefPubMedPubMedCentral
39.
Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care. 2005;43(5):480–5.CrossRefPubMed
40.
Goff Jr DC, Pandey DK, Chan FA, Ortiz C, Nichaman MZ. Congestive heart failure in the United States: is there more than meets the I(CD code)? The Corpus Christi Heart Project. Arch Intern Med. 2000;160(2):197–202.CrossRefPubMed
41.
Heiat A, Gross CP, Krumholz HM. Representation of the elderly, women, and minorities in heart failure clinical trials. Arch Intern Med. 2002;162(15):1682–8.CrossRefPubMed
42.
Nasir K, Lin Z, Bueno H, Normand SL, Drye EE, Keenan PS, et al. Is same-hospital readmission rate a good surrogate for all-hospital readmission rate? Med Care. 2010;48(5):477–81.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »