Skip to main content
Top

22-02-2017 | Gestational diabetes | Review | Article

Early Pregnancy Biochemical Predictors of Gestational Diabetes Mellitus

Journal: Current Diabetes Reports

Author: Camille E. Powe

Publisher: Springer US

Abstract

Purpose of Review

Universal oral glucose tolerance-based screening is employed to identify pregnant women with gestational diabetes mellitus (GDM), as treatment of this condition decreases the risk of associated complications. A simple and accurate blood test which identifies women at low or high risk for GDM in the first trimester would have the potential to decrease costs and improve outcomes through prevention or treatment. This review summarizes published data on early pregnancy biomarkers which have been tested as predictors of GDM.

Recent Findings

A large number of first-trimester biochemical predictors of GDM have been reported, mostly in small case-control studies. These include glycemic markers (fasting glucose, post-load glucose, hemoglobin A1C), inflammatory markers (C-reactive protein, tumor necrosis factor-alpha), insulin resistance markers (fasting insulin, sex hormone-binding globulin), adipocyte-derived markers (adiponectin, leptin), placenta-derived markers (follistatin-like-3, placental growth factor, placental exosomes), and others (e.g., glycosylated fibronectin, soluble (pro)renin receptor, alanine aminotransferase, ferritin). A few large studies suggest that first-trimester fasting glucose or hemoglobin A1C may be useful for identifying women who would benefit from early GDM treatment.

Summary

To translate the findings from observational studies of first-trimester biomarkers for GDM to clinical practice, trials or cost-effectiveness analyses of screening and treatment strategies based on these novel biomarkers are needed.
Literature
1.
Standards of medical care in diabetes—2016: summary of revisions. Diabetes Care. 2016;39 Suppl 1:S4-5. doi:10.​2337/​dc16-S003.
2.
Committee on Practice B-O. Practice Bulletin No. 137: Gestational diabetes mellitus. Obstet Gynecol. 2013;122(2 Pt 1):406–16. doi:10.​1097/​01.​AOG.​0000433006.​09219.​f1.
3.
Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352(24):2477–86. doi:10.​1056/​NEJMoa042973.PubMedCrossRef
4.
Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med. 2009;361(14):1339–48. doi:10.​1056/​NEJMoa0902430.PubMedPubMedCentralCrossRef
5.
McIntyre HD, Metzger BE, Coustan DR, Dyer AR, Hadden DR, Hod M, et al. Counterpoint: establishing consensus in the diagnosis of GDM following the HAPO study. Curr Diab Rep. 2014;14(6):497. doi:10.​1007/​s11892-014-0497-x.PubMedPubMedCentralCrossRef
6.
Long H, Cundy T. Establishing consensus in the diagnosis of gestational diabetes following HAPO: where do we stand? Curr Diab Rep. 2013;13(1):43–50. doi:10.​1007/​s11892-012-0330-3.PubMedCrossRef
7.
Vandorsten JP, Dodson WC, Espeland MA, Grobman WA, Guise JM, Mercer BM, et al. NIH consensus development conference: diagnosing gestational diabetes mellitus. NIH Consens State Sci Statements. 2013;29(1):1–31.PubMed
8.
Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165(6 Pt 1):1667–72.PubMedCrossRef
9.
Mills JL, Jovanovic L, Knopp R, Aarons J, Conley M, Park E, et al. Physiological reduction in fasting plasma glucose concentration in the first trimester of normal pregnancy: the diabetes in early pregnancy study. Metabolism. 1998;47(9):1140–4.PubMedCrossRef
10.
McIntyre HD, Sacks DA, Barbour LA, Feig DS, Catalano PM, Damm P, et al. Issues with the diagnosis and classification of hyperglycemia in early pregnancy. Diabetes Care. 2016;39(1):53–4. doi:10.​2337/​dc15-1887.PubMedCrossRef
11.
Riskin-Mashiah S, Younes G, Damti A, Auslender R. First-trimester fasting hyperglycemia and adverse pregnancy outcomes. Diabetes Care. 2009;32(9):1639–43. doi:10.​2337/​dc09-0688.PubMedPubMedCentralCrossRef
12.
Riskin-Mashiah S, Damti A, Younes G, Auslender R. First trimester fasting hyperglycemia as a predictor for the development of gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol. 2010;152(2):163–7. doi:10.​1016/​j.​ejogrb.​2010.​05.​036.PubMedCrossRef
13.
Yeral MI, Ozgu-Erdinc AS, Uygur D, Seckin KD, Karsli MF, Danisman AN. Prediction of gestational diabetes mellitus in the first trimester, comparison of fasting plasma glucose, two-step and one-step methods: a prospective randomized controlled trial. Endocrine. 2014;46(3):512–8. doi:10.​1007/​s12020-013-0111-z.PubMedCrossRef
14.
Forest JC, Garrido-Russo M, Lemay A, Carrier R, Dube JL. Reference values for the oral glucose tolerance test at each trimester of pregnancy. Am J Clin Pathol. 1983;80(6):828–31.PubMedCrossRef
15.
Super DM, Edelberg SC, Philipson EH, Hertz RH, Kalhan SC. Diagnosis of gestational diabetes in early pregnancy. Diabetes Care. 1991;14(4):288–94.PubMedCrossRef
16.
Hivert MF, Allard C, Menard J, Ouellet A, Ardilouze JL. Impact of the creation of a specialized clinic for prenatal blood sampling and follow-up care in pregnant women. J Obstet Gynaecol Can. 2012;34(3):236–42.PubMedCrossRef
17.
Nielsen LR, Ekbom P, Damm P, Glumer C, Frandsen MM, Jensen DM, et al. HbA1c levels are significantly lower in early and late pregnancy. Diabetes Care. 2004;27(5):1200–1.PubMedCrossRef
18.
Mosca A, Paleari R, Dalfra MG, Di Cianni G, Cuccuru I, Pellegrini G, et al. Reference intervals for hemoglobin A1c in pregnant women: data from an Italian multicenter study. Clin Chem. 2006;52(6):1138–43. doi:10.​1373/​clinchem.​2005.​064899.PubMedCrossRef
19.
O’Connor C, O’Shea PM, Owens LA, Carmody L, Avalos G, Nestor L, et al. Trimester-specific reference intervals for haemoglobin A1c (HbA1c) in pregnancy. Clin Chem Lab Med. 2011;50(5):905–9. doi:10.​1515/​CCLM.​2011.​397.PubMed
20.
Lurie S, Mamet Y. Red blood cell survival and kinetics during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2000;93(2):185–92.PubMedCrossRef
21.
Hashimoto K, Osugi T, Noguchi S, Morimoto Y, Wasada K, Imai S, et al. A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care. 2010;33(3):509–11. doi:10.​2337/​dc09-1954.PubMedCrossRef
22.
Hashimoto K, Noguchi S, Morimoto Y, Hamada S, Wasada K, Imai S, et al. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31(10):1945–8. doi:10.​2337/​dc08-0352.PubMedPubMedCentralCrossRef
23.
Hughes RC, Rowan J, Florkowski CM. Is there a role for HbA1c in pregnancy? Curr Diab Rep. 2016;16(1):5. doi:10.​1007/​s11892-015-0698-y.PubMedCrossRef
24.
Osmundson SS, Zhao BS, Kunz L, Wang E, Popat R, Nimbal VC, et al. First trimester hemoglobin A1c prediction of gestational diabetes. Am J Perinatol. 2016;33(10):977–82. doi:10.​1055/​s-0036-1581055.PubMedCrossRef
25.
• Hughes RC, Moore MP, Gullam JE, Mohamed K, Rowan J. An early pregnancy HbA1c >/=5.9% (41 mmol/mol) is optimal for detecting diabetes and identifies women at increased risk of adverse pregnancy outcomes. Diabetes Care. 2014;37(11):2953–9. doi:10.​2337/​dc14-1312. In this large study, first-trimester hemoglobin A1C ≥5.9% was associated with subsequent adverse pregnancy outcomes.PubMedCrossRef
26.
Fong A, Serra AE, Gabby L, Wing DA, Berkowitz KM. Use of hemoglobin A1c as an early predictor of gestational diabetes mellitus. Am J Obstet Gynecol. 2014;211(6):641 e1–7. doi:10.​1016/​j.​ajog.​2014.​06.​016.CrossRef
27.
Amylidi S, Mosimann B, Stettler C, Fiedler GM, Surbek D, Raio L. First-trimester glycosylated hemoglobin in women at high risk for gestational diabetes. Acta Obstet Gynecol Scand. 2016;95(1):93–7. doi:10.​1111/​aogs.​12784.PubMedCrossRef
28.
Berggren EK, Boggess KA, Mathew L, Culhane J. First trimester maternal glycated hemoglobin and sex hormone-binding globulin do not predict third trimester glucose intolerance of pregnancy. Reprod Sci. 2016. doi:10.​1177/​1933719116667230​.
29.
Odsaeter IH, Asberg A, Vanky E, Carlsen SM. HbA1c as screening for gestational diabetes mellitus in women with polycystic ovary syndrome. BMC Endocr Disord. 2015;15:38. doi:10.​1186/​s12902-015-0039-9.PubMedPubMedCentralCrossRef
30.
Rowan JA, Budden A, Sadler LC. Women with a nondiagnostic 75 g glucose tolerance test but elevated HbA1c in pregnancy: an additional group of women with gestational diabetes. Aust N Z J Obstet Gynaecol. 2014;54(2):177–80. doi:10.​1111/​ajo.​12166.PubMedCrossRef
31.
Osmundson SS, Norton ME, El-Sayed YY, Carter S, Faig JC, Kitzmiller JL. Early screening and treatment of women with prediabetes: a randomized controlled trial. Am J Perinatol. 2016;33(2):172–9. doi:10.​1055/​s-0035-1563715.PubMed
32.
Smirnakis KV, Martinez A, Blatman KH, Wolf M, Ecker JL, Thadhani R. Early pregnancy insulin resistance and subsequent gestational diabetes mellitus. Diabetes Care. 2005;28(5):1207–8.PubMedCrossRef
33.
Powe CE, Allard C, Battista MC, Doyon M, Bouchard L, Ecker JL, et al. Heterogeneous contribution of insulin sensitivity and secretion defects to gestational diabetes mellitus. Diabetes Care. 2016;39(6):1052–5. doi:10.​2337/​dc15-2672.PubMedCrossRef
34.
Kautzky-Willer A, Prager R, Waldhausl W, Pacini G, Thomaseth K, Wagner OF, et al. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care. 1997;20(11):1717–23.PubMedCrossRef
35.
Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol. 1990;162(4):1008–14.PubMedCrossRef
36.
Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68(6):1456–67.PubMedPubMedCentralCrossRef
37.
Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72.PubMedCrossRef
38.
Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990;113(12):909–15.PubMedCrossRef
39.
Grewal E, Kansara S, Kachhawa G, Ammini AC, Kriplani A, Aggarwal N, et al. Prediction of gestational diabetes mellitus at 24 to 28 weeks of gestation by using first-trimester insulin sensitivity indices in Asian Indian subjects. Metabolism. 2012;61(5):715–20. doi:10.​1016/​j.​metabol.​2011.​10.​009.PubMedCrossRef
40.
Bito T, Foldesi I, Nyari T, Pal A. Prediction of gestational diabetes mellitus in a high-risk group by insulin measurement in early pregnancy. Diabet Med. 2005;22(10):1434–9. doi:10.​1111/​j.​1464-5491.​2005.​01634.​x.PubMedCrossRef
41.
Yachi Y, Tanaka Y, Anasako Y, Nishibata I, Saito K, Sone H. Contribution of first trimester fasting plasma insulin levels to the incidence of glucose intolerance in later pregnancy: Tanaka women’s clinic study. Diabetes Res Clin Pract. 2011;92(2):293–8. doi:10.​1016/​j.​diabres.​2011.​02.​012.PubMedCrossRef
42.
Smirnakis KV, Plati A, Wolf M, Thadhani R, Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. Am J Obstet Gynecol. 2007;196(4):410 e1-6; discussion e6-7. 10.​1016/​j.​ajog.​2006.​12.​011.
43.
Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67(3):460–4. doi:10.​1210/​jcem-67-3-460.PubMedCrossRef
44.
Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72(1):83–9. doi:10.​1210/​jcem-72-1-83.PubMedCrossRef
45.
Katsuki A, Sumida Y, Murashima S, Fujii M, Ito K, Tsuchihashi K, et al. Acute and chronic regulation of serum sex hormone-binding globulin levels by plasma insulin concentrations in male noninsulin-dependent diabetes mellitus patients. J Clin Endocrinol Metab. 1996;81(7):2515–9. doi:10.​1210/​jcem.​81.​7.​8675570.PubMed
46.
Thadhani R, Wolf M, Hsu-Blatman K, Sandler L, Nathan D, Ecker JL. First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus. Am J Obstet Gynecol. 2003;189(1):171–6.PubMedCrossRef
47.
Maged AM, Moety GA, Mostafa WA, Hamed DA. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2014;27(11):1108–12. doi:10.​3109/​14767058.​2013.​850489.PubMedCrossRef
48.
Caglar GS, Ozdemir ED, Cengiz SD, Demirtas S. Sex-hormone-binding globulin early in pregnancy for the prediction of severe gestational diabetes mellitus and related complications. J Obstet Gynaecol Res. 2012;38(11):1286–93. doi:10.​1111/​j.​1447-0756.​2012.​01870.​x.PubMedCrossRef
49.
Hedderson MM, Xu F, Darbinian JA, Quesenberry CP, Sridhar S, Kim C, et al. Prepregnancy SHBG concentrations and risk for subsequently developing gestational diabetes mellitus. Diabetes Care. 2014;37(5):1296–303. doi:10.​2337/​dc13-1965.PubMedPubMedCentralCrossRef
50.
Nanda S, Savvidou M, Syngelaki A, Akolekar R, Nicolaides KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat Diagn. 2011;31(2):135–41. doi:10.​1002/​pd.​2636.PubMedCrossRef
51.
Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL, Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care. 2003;26(3):819–24.PubMedCrossRef
52.
Bossick AS, Peters RM, Burmeister C, Kakumanu N, Shill JE, Cassidy-Bushrow AE. Antenatal inflammation and gestational diabetes mellitus risk among pregnant African-American women. J Reprod Immunol. 2016;115:1–5. doi:10.​1016/​j.​jri.​2016.​03.​005.PubMedCrossRef
53.
Qiu C, Sorensen TK, Luthy DA, Williams MA. A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatr Perinat Epidemiol. 2004;18(5):377–84. doi:10.​1111/​j.​1365-3016.​2004.​00578.​x.PubMedCrossRef
54.
Ozgu-Erdinc AS, Yilmaz S, Yeral MI, Seckin KD, Erkaya S, Danisman AN. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices. J Matern Fetal Neonatal Med. 2015;28(16):1957–62. doi:10.​3109/​14767058.​2014.​973397.PubMedCrossRef
55.
• Syngelaki A, Visser GH, Krithinakis K, Wright A, Nicolaides KH. First trimester screening for gestational diabetes mellitus by maternal factors and markers of inflammation. Metabolism. 2016;65(3):131–7. doi:10.​1016/​j.​metabol.​2015.​10.​029. This case-control study suggests that first trimester TNF-alpha and high sensitivity CRP do not have predictive value for GDM beyond clinical characteritics.PubMedCrossRef
56.
D’Anna R, Baviera G, De Vivo A, Facciola G, Di Benedetto A, Corrado F. C-reactive protein as an early predictor of gestational diabetes mellitus. J Reprod Med. 2006;51(1):55–8.PubMed
57.
Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab. 2003;88(8):3507–12. doi:10.​1210/​jc.​2003-030186.PubMedCrossRef
58.
Chen X, Scholl TO, Stein TP. Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The Camden study. Diabetes Care. 2006;29(5):1077–82. doi:10.​2337/​diacare.​2951077.PubMedCrossRef
59.
Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51(7):2207–13.PubMedCrossRef
60.
Guillemette L, Lacroix M, Battista MC, Doyon M, Moreau J, Menard J, et al. TNFalpha dynamics during the oral glucose tolerance test vary according to the level of insulin resistance in pregnant women. J Clin Endocrinol Metab. 2014;99(5):1862–9. doi:10.​1210/​jc.​2013-4016.PubMedCrossRef
61.
• Bao W, Baecker A, Song Y, Kiely M, Liu S, Zhang C. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism. 2015;64(6):756–64. doi:10.​1016/​j.​metabol.​2015.​01.​013. This recent systematic review summarizes available data on adipokine levels as predictors of subsequent GDM.PubMedPubMedCentralCrossRef
62.
Fasshauer M, Bluher M, Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014;2(6):488–99. doi:10.​1016/​S2213-8587(13)70176-1.PubMedCrossRef
63.
Ferreira AF, Rezende JC, Vaikousi E, Akolekar R, Nicolaides KH. Maternal serum visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clin Chem. 2011;57(4):609–13. doi:10.​1373/​clinchem.​2010.​159806.PubMedCrossRef
64.
Coskun A, Ozkaya M, Kiran G, Kilinc M, Arikan DC. Plasma visfatin levels in pregnant women with normal glucose tolerance, gestational diabetes and pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2010;23(9):1014–8. doi:10.​3109/​1476705090355142​6.PubMedCrossRef
65.
Lewandowski KC, Stojanovic N, Press M, Tuck SM, Szosland K, Bienkiewicz M, et al. Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance. Diabetologia. 2007;50(5):1033–7. doi:10.​1007/​s00125-007-0610-7.PubMedCrossRef
66.
Telejko B, Kuzmicki M, Zonenberg A, Szamatowicz J, Wawrusiewicz-Kurylonek N, Nikolajuk A, et al. Visfatin in gestational diabetes: serum level and mRNA expression in fat and placental tissue. Diabetes Res Clin Pract. 2009;84(1):68–75. doi:10.​1016/​j.​diabres.​2008.​12.​017.PubMedCrossRef
67.
Kaygusuz I, Gumus II, Yilmaz S, Simavli S, Uysal S, Derbent AU, et al. Serum levels of visfatin and possible interaction with iron parameters in gestational diabetes mellitus. Gynecol Obstet Invest. 2013;75(3):203–9. doi:10.​1159/​000348560.PubMedCrossRef
68.
Lain KY, Daftary AR, Ness RB, Roberts JM. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clin Endocrinol (Oxf). 2008;69(3):407–11. doi:10.​1111/​j.​1365-2265.​2008.​03198.​x.CrossRef
69.
Nanda S, Poon LC, Muhaisen M, Acosta IC, Nicolaides KH. Maternal serum resistin at 11 to 13 weeks’ gestation in normal and pathological pregnancies. Metabolism. 2012;61(5):699–705. doi:10.​1016/​j.​metabol.​2011.​10.​006.PubMedCrossRef
70.
Palik E, Baranyi E, Melczer Z, Audikovszky M, Szocs A, Winkler G, et al. Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance. Diabetes Res Clin Pract. 2007;76(3):351–7. doi:10.​1016/​j.​diabres.​2006.​09.​005.PubMedCrossRef
71.
Hu S, Liu Q, Huang X, Tan H. Serum level and polymorphisms of retinol-binding protein-4 and risk for gestational diabetes mellitus: a meta-analysis. BMC Pregnancy Childbirth. 2016;16:52. doi:10.​1186/​s12884-016-0838-7.PubMedPubMedCentralCrossRef
72.
Huang QT, Huang Q, Luo W, Li F, Hang LL, Yu YH, et al. Circulating retinol-binding protein 4 levels in gestational diabetes mellitus: a meta-analysis of observational studies. Gynecol Endocrinol. 2015;31(5):337–44. doi:10.​3109/​09513590.​2015.​1005594.PubMedCrossRef
73.
Gursoy AY, Aynaoglu G, Caglar GS, Soylemez F. Early second trimester retinol-binding protein-4 values in cases with or without gestational diabetes mellitus risk factors: a cross-sectional study. J Obstet Gynaecol Res. 2015;41(1):55–61. doi:10.​1111/​jog.​12499.PubMedCrossRef
74.
Nanda S, Nikoletakis G, Markova D, Poon LC, Nicolaides KH. Maternal serum retinol-binding protein-4 at 11–13 weeks’ gestation in normal and pathological pregnancies. Metabolism. 2013;62(6):814–9. doi:10.​1016/​j.​metabol.​2012.​12.​011.PubMedCrossRef
75.
Abetew DF, Qiu C, Fida NG, Dishi M, Hevner K, Williams MA, et al. Association of retinol binding protein 4 with risk of gestational diabetes. Diabetes Res Clin Pract. 2013;99(1):48–53. doi:10.​1016/​j.​diabres.​2012.​10.​023.PubMedCrossRef
76.
Khovidhunkit W, Pruksakorn P, Plengpanich W, Tharavanij T. Retinol-binding protein 4 is not associated with insulin resistance in pregnancy. Metabolism. 2012;61(1):65–9. doi:10.​1016/​j.​metabol.​2011.​05.​019.PubMedCrossRef
77.
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6. doi:10.​1038/​90984.PubMedCrossRef
78.
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5. doi:10.​1210/​jcem.​86.​5.​7463.PubMedCrossRef
79.
Haghiac M, Basu S, Presley L, Serre D, Catalano PM, Hauguel-de Mouzon S. Patterns of adiponectin expression in term pregnancy: impact of obesity. J Clin Endocrinol Metab. 2014;99(9):3427–34. doi:10.​1210/​jc.​2013-4074.PubMedPubMedCentralCrossRef
80.
Chen J, Tan B, Karteris E, Zervou S, Digby J, Hillhouse EW, et al. Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines. Diabetologia. 2006;49(6):1292–302. doi:10.​1007/​s00125-006-0194-7.PubMedCrossRef
81.
Lacroix M, Battista MC, Doyon M, Menard J, Ardilouze JL, Perron P, et al. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care. 2013;36(6):1577–83. doi:10.​2337/​dc12-1731.PubMedPubMedCentralCrossRef
82.
Ravnsborg T, Andersen LL, Trabjerg ND, Rasmussen LM, Jensen DM, Overgaard M. First-trimester multimarker prediction of gestational diabetes mellitus using targeted mass spectrometry. Diabetologia. 2016;59(5):970–9. doi:10.​1007/​s00125-016-3869-8.PubMedCrossRef
83.
Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T, Luthy DA. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. J Clin Endocrinol Metab. 2004;89(5):2306–11. doi:10.​1210/​jc.​2003-031201.PubMedCrossRef
84.
Iliodromiti S, Sassarini J, Kelsey TW, Lindsay RS, Sattar N, Nelson SM. Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis. Diabetologia. 2016;59(4):692–9. doi:10.​1007/​s00125-015-3855-6.PubMedPubMedCentralCrossRef
85.
Triantafyllou GA, Paschou SA, Mantzoros CS. Leptin and hormones: energy homeostasis. Endocrinol Metab Clin North Am. 2016;45(3):633–45. doi:10.​1016/​j.​ecl.​2016.​04.​012.PubMedCrossRef
86.
Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med. 1997;3(9):1029–33.PubMedCrossRef
87.
Qiu C, Williams MA, Vadachkoria S, Frederick IO, Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet Gynecol. 2004;103(3):519–25. doi:10.​1097/​01.​AOG.​0000113621.​53602.​7a.PubMedCrossRef
88.
Sommer C, Jenum AK, Waage CW, Morkrid K, Sletner L, Birkeland KI. Ethnic differences in BMI, subcutaneous fat, and serum leptin levels during and after pregnancy and risk of gestational diabetes. Eur J Endocrinol. 2015;172(6):649–56. doi:10.​1530/​EJE-15-0060.PubMedCrossRef
89.
Maple-Brown L, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B, et al. Maternal pregravid weight is the primary determinant of serum leptin and its metabolic associations in pregnancy, irrespective of gestational glucose tolerance status. J Clin Endocrinol Metab. 2012;97(11):4148–55. doi:10.​1210/​jc.​2012-2290.PubMedCrossRef
90.
Tortoriello DV, Sidis Y, Holtzman DA, Holmes WE, Schneyer AL. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology. 2001;142(8):3426–34. doi:10.​1210/​endo.​142.​8.​8319.PubMedCrossRef
91.
Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer A. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology. 2006;147(7):3586–97. doi:10.​1210/​en.​2006-0089.PubMedCrossRef
92.
Thadhani R, Powe CE, Tjoa ML, Khankin E, Ye J, Ecker J, et al. First-trimester follistatin-like-3 levels in pregnancies complicated by subsequent gestational diabetes mellitus. Diabetes Care. 2010;33(3):664–9. doi:10.​2337/​dc09-1745.PubMedCrossRef
93.
Karageyim Karsidag AY, Purut YE, Buyukbayrak EE, Orcun A, Menke M. Can first trimester maternal serum follistatin like 3 levels predict developing gestational diabetes mellitus? J Matern Fetal Neonatal Med. 2016:1–4. doi:10.​1080/​14767058.​2016.​1235695.
94.
Hu D, Tian T, Guo J, Wang H, Chen D, Dong M. Decreased maternal and placental concentrations of follistatin-like 3 in gestational diabetes. Clin Chim Acta. 2012;413(5–6):533–6. doi:10.​1016/​j.​cca.​2011.​10.​029.PubMedCrossRef
95.
Naf S, Escote X, Ballesteros M, Yanez RE, Simon-Muela I, Gil P, et al. Serum activin A and follistatin levels in gestational diabetes and the association of the Activin A-Follistatin system with anthropometric parameters in offspring. PLoS One. 2014;9(4):e92175. doi:10.​1371/​journal.​pone.​0092175.PubMedPubMedCentralCrossRef
96.
Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856–69. doi:10.​1161/​CIRCULATIONAHA.​109.​853127.PubMedCrossRef
97.
Syngelaki A, Kotecha R, Pastides A, Wright A, Nicolaides KH. First-trimester biochemical markers of placentation in screening for gestational diabetes mellitus. Metabolism. 2015;64(11):1485–9. doi:10.​1016/​j.​metabol.​2015.​07.​015.PubMedCrossRef
98.
Ong CY, Lao TT, Spencer K, Nicolaides KH. Maternal serum level of placental growth factor in diabetic pregnancies. J Reprod Med. 2004;49(6):477–80.PubMed
99.
Eleftheriades M, Papastefanou I, Lambrinoudaki I, Kappou D, Lavranos D, Akalestos A, et al. Elevated placental growth factor concentrations at 11–14 weeks of gestation to predict gestational diabetes mellitus. Metabolism. 2014;63(11):1419–25. doi:10.​1016/​j.​metabol.​2014.​07.​016.PubMedCrossRef
100.
Mosimann B, Amylidi S, Risch L, Wiedemann U, Surbek D, Baumann M, et al. First-trimester placental growth factor in screening for gestational diabetes. Fetal Diagn Ther. 2016;39(4):287–91. doi:10.​1159/​000441027.PubMedCrossRef
101.
Levine RJ, Thadhani R, Qian C, Lam C, Lim KH, Yu KF, et al. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005;293(1):77–85. doi:10.​1001/​jama.​293.​1.​77.PubMedCrossRef
102.
Smith GC, Crossley JA, Aitken DA, Jenkins N, Lyall F, Cameron AD, et al. Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth. Obstet Gynecol. 2007;109(6):1316–24. doi:10.​1097/​01.​AOG.​0000265804.​09161.​0d.PubMedCrossRef
103.
Redman CW, Sargent IL. Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta. 2008;29(Suppl A):S73–7. doi:10.​1016/​j.​placenta.​2007.​11.​016.PubMedCrossRef
104.
Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016;65(3):598–609. doi:10.​2337/​db15-0966.PubMedCrossRef
105.
Rasanen JP, Snyder CK, Rao PV, Mihalache R, Heinonen S, Gravett MG, et al. Glycosylated fibronectin as a first-trimester biomarker for prediction of gestational diabetes. Obstet Gynecol. 2013;122(3):586–94. doi:10.​1097/​AOG.​0b013e3182a0c88b​.PubMedCrossRef
106.
Huhn EA, Fischer T, Gobl CS, Todesco Bernasconi M, Kreft M, Kunze M, et al. Screening of gestational diabetes mellitus in early pregnancy by oral glucose tolerance test and glycosylated fibronectin: study protocol for an international, prospective, multicentre cohort trial. BMJ Open. 2016;6(10):e012115. doi:10.​1136/​bmjopen-2016-012115.PubMedPubMedCentralCrossRef
107.
Krop M, Lu X, Danser AH, Meima ME. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch. 2013;465(1):87–97. doi:10.​1007/​s00424-012-1105-z.PubMedCrossRef
108.
Kaneshiro Y, Ichihara A, Sakoda M, Takemitsu T, Nabi AH, Uddin MN, et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol. 2007;18(6):1789–95. doi:10.​1681/​ASN.​2006091062.PubMedCrossRef
109.
Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53(6):1077–82. doi:10.​1161/​HYPERTENSIONAHA.​108.​127258.PubMedCrossRef
110.
Watanabe N, Morimoto S, Fujiwara T, Suzuki T, Taniguchi K, Mori F, et al. Prediction of gestational diabetes mellitus by soluble (pro)renin receptor during the first trimester. J Clin Endocrinol Metab. 2013;98(6):2528–35. doi:10.​1210/​jc.​2012-4139.PubMedCrossRef
111.
Gokulakrishnan K, Maheswari K, Mahalakshmi MM, Kalaiyarasi G, Bhavadharini B, Pandey GK, et al. Association of Soluble (Pro) Renin Receptor with Gestational Diabetes Mellitus. Endocr Pract. 2015;21(1):7–13. doi:10.​4158/​EP14254.​OR.PubMedCrossRef
112.
Bonakdaran S, Azami G, Tara F, Poorali L. Soluble (pro) renin receptor is a predictor of gestational diabetes mellitus. Curr Diabetes Rev. 2016. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​?​term=​Soluble+(pro)+renin+953Q1+rec​eptor+is+a+predi​ctor+of+gestatio​nal+diabetes+mel​litus
113.
Yarrington CD, Cantonwine DE, Seely EW, McElrath TF, Zera CA. The association of alanine aminotransferase in early pregnancy with gestational diabetes. Metab Syndr Relat Disord. 2016;14(5):254–8. doi:10.​1089/​met.​2015.​0106.PubMedCrossRef
114.
Leng J, Zhang C, Wang P, Li N, Li W, Liu H, et al. Plasma levels of alanine aminotransferase in the first trimester identify high risk chinese women for gestational diabetes. Sci Rep. 2016;6:27291. doi:10.​1038/​srep27291.PubMedPubMedCentralCrossRef
115.
Tan PC, Aziz AZ, Ismail IS, Omar SZ. Gamma-glutamyltransferase, alanine transaminase and aspartate transaminase levels and the diagnosis of gestational diabetes mellitus. Clin Biochem. 2012;45(15):1192–6. doi:10.​1016/​j.​clinbiochem.​2012.​05.​025.PubMedCrossRef
116.
Khambalia AZ, Aimone A, Nagubandi P, Roberts CL, McElduff A, Morris JM, et al. High maternal iron status, dietary iron intake and iron supplement use in pregnancy and risk of gestational diabetes mellitus: a prospective study and systematic review. Diabet Med. 2016;33(9):1211–21. doi:10.​1111/​dme.​13056.PubMedCrossRef
117.
Bowers KA, Olsen SF, Bao W, Halldorsson TI, Strom M, Zhang C. Plasma concentrations of ferritin in early pregnancy are associated with risk of gestational diabetes mellitus in women in the Danish National Birth Cohort. J Nutr. 2016;146(9):1756–61. doi:10.​3945/​jn.​115.​227793.PubMedCrossRef
118.
Theriault S, Giguere Y, Masse J, Girouard J, Forest JC. Early prediction of gestational diabetes: a practical model combining clinical and biochemical markers. Clin Chem Lab Med. 2016;54(3):509–18. doi:10.​1515/​cclm-2015-0537.PubMedCrossRef
119.
Savvidou M, Nelson SM, Makgoba M, Messow CM, Sattar N, Nicolaides K. First-trimester prediction of gestational diabetes mellitus: examining the potential of combining maternal characteristics and laboratory measures. Diabetes. 2010;59(12):3017–22. doi:10.​2337/​db10-0688.PubMedPubMedCentralCrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »