Skip to main content
Top

15-09-2016 | Empagliflozin | Article

The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes

Journal: Diabetologia

Authors: David Cherney, Søren S. Lund, Bruce A. Perkins, Per-Henrik Groop, Mark E. Cooper, Stefan Kaspers, Egon Pfarr, Hans J. Woerle, Maximilian von Eynatten

Publisher: Springer Berlin Heidelberg

Abstract

Aims/hypothesis

Sodium glucose cotransporter 2 (SGLT2) inhibition lowers HbA1c, systolic BP (SBP) and weight in patients with type 2 diabetes and reduces renal hyperfiltration associated with type 1 diabetes, suggesting decreased intraglomerular hypertension. As lowering HbA1c, SBP, weight and intraglomerular pressure is associated with anti-albuminuric effects in diabetes, we hypothesised that SGLT2 inhibition would reduce the urine albumin-to-creatinine ratio (UACR) to a clinically meaningful extent.

Methods

We examined the effect of the SGLT2 inhibitor empagliflozin on UACR by pooling data from patients with type 2 diabetes and prevalent microalbuminuria (UACR = 30–300 mg/g; n = 636) or macroalbuminuria (UACR > 300 mg/g; n = 215) who participated in one of five phase III randomised clinical trials. Primary assessment was defined as percentage change in geometric mean UACR from baseline to week 24.

Results

After controlling for clinical confounders including baseline log-transformed UACR, HbA1c, SBP and estimated GFR (according to the Modification of Diet in Renal Disease [MDRD] formula), treatment with empagliflozin significantly reduced UACR in patients with microalbuminuria (−32% vs placebo; p < 0.001) or macroalbuminuria (−41% vs placebo; p < 0.001). Intriguingly, in regression models, most of the UACR-lowering effect with empagliflozin was not explained by SGLT2 inhibition-related improvements in HbA1c, SBP or weight.

Conclusions/interpretation

In patients with type 2 diabetes and either micro- or macroalbuminuria, empagliflozin reduced UACR by a clinically meaningful amount. This effect was largely independent of the known metabolic or systemic haemodynamic effects of this drug class. Our results further support a direct renal effect of SGLT2 inhibitors. Prospective studies are needed to explore the potential of this intervention to alter the course of kidney disease in high-risk patients with diabetes.

Trial registration:

Clinicaltrials.gov NCT01177813 (study 1); NCT01159600 (study 2); NCT01159600 (study 3); NCT01210001 (study 4); and NCT01164501 (study 5).
Literature
1.
Molitch ME, Adler AI, Flyvbjerg A et al (2015) Diabetic kidney disease: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 87:20–30CrossRefPubMed
2.
Rein P, Vonbank A, Saely CH et al (2011) Relation of albuminuria to angiographically determined coronary arterial narrowing in patients with and without type 2 diabetes mellitus and stable or suspected coronary artery disease. Am J Cardiol 107:1144–1148CrossRefPubMed
3.
de Boer IH, Afkarian M, Rue TC et al (2014) Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol 25:2342–2350CrossRefPubMedPubMedCentral
4.
Cherney DZ, Scholey JW, Miller JA (2008) Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr Diabetes Rev 4:280–290CrossRefPubMed
5.
Lambers Heerspink HJ, Holtkamp FA et al (2012) Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int 82:330–337CrossRefPubMed
6.
Navarro-Diaz M, Serra A, Romero R et al (2006) Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up. J Am Soc Nephrol 17(Suppl 3):S213–S217CrossRefPubMed
7.
Roden M, Weng J, Eilbracht J et al (2013) Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 1:208–219CrossRefPubMed
8.
Häring HU, Merker L, Seewaldt-Becker E et al (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36:3396–3404CrossRefPubMedPubMedCentral
9.
Häring HU, Merker L, Seewaldt-Becker E et al (2014) Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 37:1650–1659CrossRefPubMed
10.
Kovacs CS, Seshiah V, Swallow R et al (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16:147–158CrossRefPubMed
11.
Cherney DZI, Perkins BA, Soleymanlou N et al (2014) The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation 129:587–597CrossRefPubMed
12.
Škrtić M, Yang GK, Perkins BA et al (2014) Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 57:2599–2602CrossRefPubMed
13.
Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862CrossRefPubMed
14.
Cherney DZ, Perkins BA, Soleymanlou N et al (2014) Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int 86:1057–1058CrossRefPubMed
15.
Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384CrossRefPubMed
16.
de Zeeuw D, Agarwal R, Amdahl M et al (2010) Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376:1543–1551CrossRefPubMed
17.
Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M (2013) Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 36:3460–3468CrossRefPubMedPubMedCentral
18.
Vallon V, Gerasimova M, Rose MA et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306:F194–F204CrossRefPubMed
19.
Tahara A, Kurosaki E, Yokono M et al (2014) Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol 66:975–987CrossRefPubMed
20.
Malatiali S, Francis I, Barac-Nieto M (2008) Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res 2008:305–403CrossRef
21.
Arakawa K, Ishihara T, Oku A et al (2001) Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na(+)-glucose cotransporter inhibitor T-1095. Br J Pharmacol 132:578–586CrossRefPubMedPubMedCentral
22.
Gembardt F, Bartaun C, Jarzebska N et al (2014) The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol 307:F317–F325CrossRefPubMed
23.
Kohan DE, Fioretto P, Tang W, List JF (2014) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 85:962–971CrossRefPubMed
24.
Yale JF, Bakris G, Cariou B et al (2013) Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 15:463–473CrossRefPubMedPubMedCentral
25.
Heerspink HJL, Johnsson E, Gause-Nilsson I, Cain VA, Sjostrom CD (2016) Dapagliflozin reduces albuminuria in hypertensive diabetic patients using renin-angiotensin blockers. Diabetes Obes Metab 18:590–597
26.
Thomson SC, Rieg T, Miracle C et al (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302:R75–R83CrossRefPubMed
27.
Cherney DZI, Perkins BA, Soleymanlou N et al (2014) The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 13:28CrossRefPubMedPubMedCentral
28.
Shimizu M, Furuichi K, Toyama T et al (2013) Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care 36:3655–3662CrossRefPubMedPubMedCentral
29.
Osorio H, Coronel I, Arellano A et al (2012) Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid Med Cell Longev 2012:542042CrossRefPubMedPubMedCentral
30.
Panchapakesan U, Pegg K, Gross S et al (2013) Effects of SGLT2 inhibition in human kidney proximal tubular cells—renoprotection in diabetic nephropathy? PLoS One 8, e54442CrossRefPubMedPubMedCentral
31.
Terami N, Ogawa D, Tachibana H et al (2014) Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 9, e100777CrossRefPubMedPubMedCentral
32.
Lytvyn Y, Škrtić M, Yang GK, Yip PM, Perkins BA, Cherney DZ (2015) Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 308:F77–F83CrossRefPubMed
33.
Lytvyn Y, Perkins BA, Cherney DZ (2015) Uric acid as a biomarker and a therapeutic target in diabetes. Can J Diabetes 39:239–246CrossRefPubMed
34.
Vogt L, Waanders F, Boomsma F, de Zeeuw D, Navis G (2008) Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 19:999–1007CrossRefPubMedPubMedCentral
35.
Allen TJ, Cooper ME, O’Brien RC, Bach LA, Jackson B, Jerums G (1990) Glomerular filtration rate in streptozotocin-induced diabetic rats. Role of exchangeable sodium, vasoactive hormones, and insulin therapy. Diabetes 39:1182–1190CrossRefPubMed
36.
Ortola FV, Ballermann BJ, Anderson S, Mendez RE, Brenner BM (1987) Elevated plasma atrial natriuretic peptide levels in diabetic rats. Potential mediator of hyperfiltration. J Clin Invest 80:670–674CrossRefPubMedPubMedCentral
37.
Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ (2013) Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther 345:464–472CrossRefPubMedPubMedCentral
38.
Cooper ME, Perkovic V, McGill JB et al (2015) Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am J Kidney Dis 66:441–449CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »