Skip to main content
Top

16-09-2016 | Dyslipidemia | Review | Article

PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD

Authors: Barbara Gross, Michal Pawlak, Philippe Lefebvre, Bart Staels

Abstract

Obesity is a worldwide epidemic that predisposes individuals to cardiometabolic complications, such as type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), which are all related to inappropriate ectopic lipid deposition. Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are highly needed. The peroxisome proliferator-activated receptors (PPARs) modulate several biological processes that are perturbed in obesity, including inflammation, lipid and glucose metabolism and overall energy homeostasis. Here, we review how PPARs regulate the functions of adipose tissues, such as adipogenesis, lipid storage and adaptive thermogenesis, under healthy and pathological conditions. We also discuss the clinical use and mechanism of PPAR agonists in the treatment of obesity comorbidities such as dyslipidaemia, T2DM and NAFLD. First generation PPAR agonists, primarily those acting on PPARγ, are associated with adverse effects that outweigh their clinical benefits, which led to the discontinuation of their development. An improved understanding of the physiological roles of PPARs might, therefore, enable the development of safe, new PPAR agonists with improved therapeutic potential.

Nat Rev Endocrinol 2017; 13: 36–49. doi: 10.1038/nrendo.2016.135

Approximately 13% of the adult population worldwide has obesity, consequently, this disease is the most prevalent chronic metabolic disorder and one of the most important global public-health challenges1. Obesity is the result of an imbalance between energy intake and expenditure. Excess calories are initially stored in subcutaneous fat; however, when this storage capacity is overwhelmed, the altered endocrine functions of adipose tissues and the ensuing ectopic fat accumulation lead to a lipotoxic metabolic stress, which promotes low-grade inflammation and metabolic dysfunction in organs such as the liver or skeletal muscle, thereby promoting insulin resistance. The metabolic abnormalities associated with obesity predispose patients to cardiometabolic complications such as dyslipidaemia, type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), which put them at risk of developing cardiovascular diseases (CVD)2.

Literature

 1. World Health Organization. Obesity and overweight fact sheet http://www.who.int/mediacentre/factsheets/fs311/en/ (WHO, 2016).
2. Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).
3. Venteclef, N., Jakobsson, T., Steffensen, K. R. & Treuter, E. Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends Endocrinol. Metab. 22, 333–343 (2011).
4. Berrabah, W., Aumercier, P., Lefebvre, P. & Staels, B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett. 585, 1640–1650 (2011).
5. Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).
6. Staels, B., Maes, M. & Zambon, A. Fibrates and future PPARα agonists in the treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 5, 542–553 (2008).
7. Cariou, B., Charbonnel, B. & Staels, B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab. 23, 205–215 (2012).
8. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).
9. Luquet, S. et al. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 17, 2299–2301 (2003).
10. Wang, Y.-X. et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2, e294 (2004).
11. Schuler, M. et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006).
12. Neels, J. G. & Grimaldi, P. A. Physiological functions of peroxisome proliferator-activated receptor β. Physiol. Rev. 94, 795–858 (2014).
13. Pellegrinelli, V., Carobbio, S. & Vidal-Puig, A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59, 1075–1088 (2016).
14. Medina-Gomez, G. et al. PPARγ2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 3, e64 (2007).
15. Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).
16. Trayhurn, P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34, 207–236 (2014).
17. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).
18. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).
19. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans.. J. Clin. Invest. 123, 3404–3408 (2013).
20. Berbée, J. F. P. et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).
21. Wang, Q. et al. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS ONE 10, e0123795 (2015).
22. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).
23. Escher, P. et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142, 4195–4202 (2001).
24. Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).
25. Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013).
26. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007). This paper highlights the role of the zinc finger protein PRDM16 in brown fat differentiation and illustrates the complex transcriptional cascade controlling adipocyte cell identity.
27. Tong, Y. et al. Suppression of expression of muscle-associated proteins by PPARαin brown adipose tissue. Biochem. Biophys. Res. Commun. 336, 76–83 (2005).
28. Hondares, E. et al. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286, 43112–43122 (2011).
29. Barbera, M. J. et al. Peroxisome proliferator-activated receptor α activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J. Biol. Chem.276, 1486–1493 (2001).
30. Rachid, T. L. et al. PPAR-α agonist elicits metabolically active brown adipocytes and weight loss in diet-induced obese mice. Cell Biochem. Funct. 33, 249–256 (2015).
31. Wang, Y.-X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).
32. Pan, D., Fujimoto, M., Lopes, A. & Wang, Y.-X. Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137, 73–86 (2009).
33. Wang, F., Mullican, S. E., DiSpirito, J. R., Peed, L. C. & Lazar, M. A. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc. Natl Acad. Sci. USA 110, 18656–18661 (2013).
34. Majithia, A. R. et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl Acad. Sci. USA 111, 13127–13132 (2014).
35. Step, S. E. et al. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers. Genes Dev. 28, 1018–1028 (2014).
36. Lefterova, M. I., Haakonsson, A. K., Lazar, M. A. & Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 25, 293–302 (2014).
37. Oger, F. et al. Peroxisome proliferator-activated receptor γ regulates genes involved in insulin/insulin-like growth factor signaling and lipid metabolism during adipogenesis through functionally distinct enhancer classes. J. Biol. Chem. 289, 708–722 (2014).
38. Zhou, H. et al. Dual functions of TAF7L in adipocyte differentiation. eLife 2, e00170 (2013).
39. Dubois-Chevalier, J. et al. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res. 42, 10943–10959 (2014).
40. Siersbæk, R. et al. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 7, 1443–1455 (2014).
41. Fujiki, K. et al. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun. 4, 2262 (2013).
42. Jonker, J. W. et al. A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394 (2012).
43. Lefebvre, B. et al. Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans. J. Clin. Invest. 120, 1454–1468 (2010).
44. Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556–567 (2012).
45. Pino, E., Wang, H., McDonald, M. E., Qiang, L. & Farmer, S. R. Roles for peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivators 1αand 1β in regulating response of white and brown adipocytes to hypoxia. J. Biol. Chem. 287, 18351–18358 (2012).
46. Gealekman, O. et al. Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 55, 2794–2799 (2012).
47. Gealekman, O. et al. Enhanced angiogenesis in obesity and in response to PPARγactivators through adipocyte VEGF and ANGPTL4 production. Am. J. Physiol. Endocrinol. Metab. 295, E1056–E1064 (2008).
48. Toubal, A. et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J. Clin. Invest. 123, 362–379 (2013). This paper shows that the transcriptional corepressor complex SMRT-GPS2 regulates proinflammatory gene expression in adipocytes and is downregulated in obesity. PPARγ activation restores its expression in obese tissue, alleviating the proinflammatory process.
49. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).
50. Vila, I. K. et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep. 7, 1116–1129 (2014).
51. Dalmas, E. et al. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat. Med. 21, 610–618 (2015).
52. Guan, Y. et al. Thiazolidinediones expand body fluid volume through PPARγstimulation of ENaC-mediated renal salt absorption. Nat. Med. 11, 861–866 (2005). Fluid retention, causing oedema in patients predisposed to T2DM and treated with thiazolidinedione, is a PPARγ-driven transcriptional process through the regulation of the expression of the amiloride-sensitive channel ENaC.
53. Zhang, H. et al. Collecting duct-specific deletion of peroxisome proliferator-activated receptor γ blocks thiazolidinedione-induced fluid retention. Proc. Natl Acad. Sci. USA 102, 9406–9411 (2005).
54. Kahn, S. E. et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31, 845–851 (2008).
55. Giaginis, C., Tsantili-Kakoulidou, A. & Theocharis, S. Peroxisome proliferator-activated receptor-γ ligands as bone turnover modulators. Expert Opin. Investig. Drugs 16, 195–207 (2007).
56. Zhang, Y. et al. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARγ. Gene 557, 209–214 (2015).

57. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA109, 3143–3148 (2012).
58. Bruedigam, C. et al. A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells 28, 916–927 (2010).
59. Wan, Y., Chong, L.-W. & Evans, R. M. PPAR-γ regulates osteoclastogenesis in mice. Nat. Med. 13, 1496–1503 (2007). Thiazolidinedione treatment increases bone fractures in women, probably resulting from decreased osteoblastogenesis from bone marrow mesenchymal stem cells, and also from increased formation of bone-resorbing osteoclasts as shown in preclinical models.
60. Auboeuf, D. et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46, 1319–1327 (1997).
61. Loviscach, M. et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43, 304–311 (2000).
62. Goto, T. et al. Activation of peroxisome proliferator-activated receptor-α stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 52, 873–884 (2011).
63. Guerre-Millo, M. et al. Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638–16642 (2000).
64. Jeong, S. et al. Effects of fenofibrate on high-fat diet-induced body weight gain and adiposity in female C57BL/6J mice. Metabolism 53, 1284–1289 (2004).
65. Leuenberger, N., Pradervand, S. & Wahli, W. Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J. Clin. Invest. 119, 3138–3148 (2009).
66. Jeong, S. & Yoon, M. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice. Exp. Mol. Med. 41, 397–405 (2009).
67. Brun, R. P. et al. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974–984 (1996).
68. Hiuge, A. et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler. Thromb. Vasc. Biol.27, 635–641 (2007).
69. Tsuchida, A. et al. Peroxisome proliferator-activated receptor (PPAR)α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARα, PPARγ, and their combination. Diabetes 54, 3358–3370 (2005).
70. Chinetti, G., Zawadski, C., Fruchart, J. C. & Staels, B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochem. Biophys. Res. Commun. 314, 151–158 (2004).
71. Wang, W. et al. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. Exp. Cell Res. 319, 1523–1533 (2013).
72. Bastie, C., Holst, D., Gaillard, D., Jehl-Pietri, C. & Grimaldi, P. A. Expression of peroxisome proliferator-activated receptor PPARδ promotes induction of PPARγand adipocyte differentiation in 3T3C2 fibroblasts. J. Biol. Chem. 274, 21920–21925 (1999).
73. Bastie, C., Luquet, S., Holst, D., Jehl-Pietri, C. & Grimaldi, P. A. Alterations of peroxisome proliferator-activated receptor δ activity affect fatty acid-controlled adipose differentiation. J. Biol. Chem. 275, 38768–38773 (2000).
74. Hansen, J. B. et al. Peroxisome proliferator-activated receptor δ (PPARδ)-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J. Biol. Chem. 276, 3175–3182 (2001).
75. Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA 99, 303–308 (2002).
76. Peters, J. M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol. 20, 5119–5128 (2000).
77. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).
78. Bays, H. E. et al. MBX-8025, a novel peroxisome proliferator receptor-δ agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96, 2889–2897 (2011).
79. Sodhi, K. et al. PPARδ binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int. J. Obes. 38, 456–465 (2014).
80. Serrano-Marco, L. et al. Activation of peroxisome proliferator-activated receptor-β/-δ (PPAR-β/-δ) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes. Diabetes 60, 1990–1999 (2011).
81. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell. Metab. 7, 485–495 (2008).
82. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).
83. Vernochet, C. et al. C/EBPα and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor γagonists. Mol. Cell. Biol. 29, 4714–4728 (2009).
84. Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).
85. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012). This paper identifies that the transcriptional network regulated by PPARγ is cell-specific and conditional by post-translational modifications that regulates its ability to interact with transcriptional coregulators.
86. Mayoral, R. et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab. 4, 378–391 (2015).
87. Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010).
88. Banks, A. S. et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 517, 391–395 (2015).
89. Quelle, F. W. & Sigmund, C. D. PPARγ: no SirT, no service. Circ. Res. 112, 411–414 (2013).
90. Glineur, C. et al. Fenofibrate inhibits endothelin-1 expression by peroxisome proliferator-activated receptor α-dependent and independent mechanisms in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 621–628 (2013).
91. Loft, A. et al. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev. 29, 7–22 (2015).
92. Villanueva, C. J. et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metab.17, 423–435 (2013).
93. Rachid, T. L. et al. Fenofibrate (PPARα agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol. Cell. Endocrinol. 402, 86–94 (2015). In this article, PPARα is identified as a promising target of obesity-related diseases due to its ability to promote beige cell formation in vivo, in HFD-fed mice.
94. Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).
95. Wang, L. et al. PPARα and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders. Diabetes 62, 4122–4131 (2013). A novel function of erythropoietin in promoting oxidative metabolism and browning of WAT via a mechanism dependent on PPARα and Sirt1 is shown.
96. Wilcox, R., Kupfer, S., Erdmann, E. & PROactive Study investigators. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am. Heart J. 155, 712–717 (2008).
97. Zhang, L.-H., Kamanna, V. S., Ganji, S. H., Xiong, X.-M. & Kashyap, M. L.Pioglitazone increases apolipoprotein A-I production by directly enhancing PPRE-dependent transcription in HepG2 cells. J. Lipid Res. 51, 2211–2222 (2010).
98. Chinetti, G. et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7, 53–58 (2001).
99. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010). A systematic review and meta-analysis of fibrate actions in cardiovascular disease from 18 trials including >45,000 participants.
100. Bruckert, E., Labreuche, J., Deplanque, D., Touboul, P.-J. & Amarenco, P. Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis. J. Cardiovasc. Pharmacol. 57, 267–272 (2011).
101. Lee, M., Saver, J. L., Towfighi, A., Chow, J. & Ovbiagele, B. Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis 217, 492–498 (2011).
102. Peters, J. M. et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor α-deficient mice. J. Biol. Chem. 272, 27307–27312 (1997).
103. Schoonjans, K. et al. PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336–5348 (1996).
104. Berthou, L. et al. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J. Clin. Invest. 97, 2408–2416 (1996).
105. Vu-Dac, N. et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J. Clin. Invest. 96, 741–750 (1995).
106. Vu-Dac, N. et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor αactivators. J. Biol. Chem. 278, 17982–17985 (2003).
107. Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A.Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371, 32–41 (2014).
108. The TG and HDL Working Group of the Exome Sequencing Project et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med.371, 22–31 (2014).
109. Colin, S. et al. Activation of intestinal peroxisome proliferator-activated receptor-αincreases high-density lipoprotein production. Eur. Heart J. 34, 2566–2574 (2013).
110. Umeda, Y. et al. Inhibitory action of gemfibrozil on cholesterol absorption in rat intestine. J. Lipid Res. 42, 1214–1219 (2001).
111. Leibowitz, M. D. et al. Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett. 473, 333–336 (2000).
112. Oliver, W. R. et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001).
113. Olson, E. J., Pearce, G. L., Jones, N. P. & Sprecher, D. L. Lipid effects of peroxisome proliferator-activated receptor-δ agonist GW501516 in subjects with low high-density lipoprotein cholesterol: characteristics of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 32, 2289–2294 (2012).
114. Akiyama, T. E. et al. Peroxisome proliferator- activated receptor β/δ regulates very low density lipoprotein production and catabolism in mice on a Western diet. J. Biol. Chem. 279, 20874–20881 (2004).
115. Risérus, U. et al. Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes 57, 332–339 (2008).
116. Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550–554 (2013). This article highlights an example of liver communication with peripheral tissues to control energy homeostasis: during nocturnal feeding, PPARβ/δ-mediated lipogenesis in the liver modulates skeletal muscle fatty acid oxidation via the production of phosphatidylcholine 18:0/18:1, a PPARαligand.
117. Sanderson, L. M., Boekschoten, M. V., Desvergne, B., Müller, M. & Kersten, S.Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver. Physiol. Genomics 41, 42–52 (2010).
118. Barroso, E. et al. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 152, 1848–1859 (2011). In this paper, the PPARβ/δ agonist GW501516 reverses HFD-induced hypertriglyceridaemia through enhanced fatty acid oxidation and uptake via a mechanism involving amplification of the lipin 1–PGC1α–PPARα pathway.
119. van der Veen, J. N. et al. Reduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1. J. Lipid Res. 46, 526–534 (2005).
120. Vrins, C. L. J. et al. Peroxisome proliferator-activated receptor δ activation leads to increased transintestinal cholesterol efflux. J. Lipid Res. 50, 2046–2054 (2009).
121. Sprecher, D. L. et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arterioscler. Thromb. Vasc. Biol. 27, 359–365 (2007).
122. Thulin, P., Glinghammar, B., Skogsberg, J., Lundell, K. & Ehrenborg, E. PPARδ increases expression of the human apolipoprotein A-II gene in human liver cells. Int. J. Mol. Med. 21, 819–824 (2008).
123. Chehaibi, K. et al. PPAR-β/δ activation promotes phospholipid transfer protein expression. Biochem. Pharmacol. 94, 101–108 (2015).
124. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995). Deorphanization of PPARγ provided a molecular basis for the pharmacological, insulin sensitizing effect of thiazolidinediones.
125. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).
126. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).
127. Kramer, D., Shapiro, R., Adler, A., Bush, E. & Rondinone, C. M. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism 50, 1294–1300 (2001).
128. Ye, R. & Scherer, P. E. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab. 2, 133–141 (2013).
129. Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl Acad. Sci. USA 110, 5422–5427 (2013).
130. Colca, J. R. et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)—relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE 8, e61551 (2013).
131. Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P. & Dixon, J. E. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc. Natl Acad. Sci. USA 104, 5318–5323 (2007).
132. Kusminski, C. M., Park, J. & Scherer, P. E. MitoNEET-mediated effects on browning of white adipose tissue. Nat. Commun. 5, 3962 (2014).
133. Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).
134. Kim, H. et al. Peroxisome proliferator-activated receptor-α agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes 52, 1770–1778 (2003).
135. Chou, C. J. et al. WY14,643, a peroxisome proliferator-activated receptor α(PPARα) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J. Biol. Chem. 277, 24484–24489 (2002).
136. Larter, C. Z. et al. Peroxisome proliferator-activated receptor-α agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 27, 341–350 (2012).
137. Lalloyer, F. et al. Peroxisome proliferator-activated receptor α improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 55, 1605–1613 (2006).
138. Black, R. N. A. et al. The peroxisome proliferator-activated receptor α agonist fenofibrate has no effect on insulin sensitivity compared to atorvastatin in type 2 diabetes mellitus; a randomised, double-blind controlled trial. J. Diabetes Complications 28, 323–327 (2014).
139. Lee, C.-H. et al. PPARδ regulates glucose metabolism and insulin sensitivity. Proc. Natl Acad. Sci. USA 103, 3444–3449 (2006).
140. Gan, Z. et al. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J. Clin. Invest. 123, 2564–2575 (2013).
141. Benetti, E. et al. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism. Mediators Inflamm. 2013, 509502 (2013).
142. Christodoulides, C., Dyson, P., Sprecher, D., Tsintzas, K. & Karpe, F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J. Clin. Endocrinol. Metab. 94, 3594–3601 (2009).
143. Liu, S. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation. J. Biol. Chem. 286, 1237–1247 (2011).
144. Bojic, L. A. et al. PPARδ activation attenuates hepatic steatosis in Ldlr−/− mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J. Lipid Res. 55, 1254–1266 (2014).
145. Qin, X. et al. Peroxisome proliferator-activated receptor-δ induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology 48, 432–441 (2008).
146. Ravnskjaer, K. et al. PPARδ is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J. Lipid Res. 51, 1370–1379 (2010).
147. Jiang, L., Wan, J., Ke, L., Lü, Q. & Tong, N. Activation of PPARδ promotes mitochondrial energy metabolism and decreases basal insulin secretion in palmitate-treated β-cells. Mol. Cell. Biochem. 343, 249–256 (2010).
148. Yang, Y. et al. Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor. Cell. Signal.26, 268–278 (2014).
149. Daoudi, M. et al. PPARβ/δ activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 140, 1564–1574 (2011).
150. Serrano-Marco, L. et al. The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 55, 743–751 (2012).
151. Barroso, E. et al. PPARβ/δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. Biochim. Biophys. Acta 1852, 1049–1058 (2015).
152. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
153. Salvadó, L. et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 57, 2126–2135 (2014).
154. Coll, T. et al. Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells. Endocrinology 151, 1560–1569 (2010).
155. Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).
156. Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278, 34268–34276 (2003).
157. Francque, S. et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63, 164–173 (2015). This article provides novel insights into the molecular mechanism of NASH in humans and implicates PPARα, whose expression decreases with progressing disease.
158. Lee, Y. J. et al. Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc. Natl Acad. Sci. USA 109, 13656–13661 (2012).
159. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).
160. Morán-Salvador, E. et al. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 25, 2538–2550 (2011).
161. Matsusue, K. et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737–747 (2003).
162. Matsusue, K. et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARγ target gene Fsp27Cell Metab. 7, 302–311 (2008).
163. Chang, B. H.-J. et al. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol. Cell. Biol. 26, 1063–1076 (2006).
164. Hasenfuss, S. C. et al. Regulation of steatohepatitis and PPARγ signaling by distinct AP-1 dimers. Cell. Metab. 19, 84–95 (2014).
165. Escalona-Nandez, I. et al. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 and 9 under steatotic conditions. Biochem. Biophys. Res. Commun. 458, 751–756 (2015).
166. Yamauchi, T. et al. Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Invest. 108, 1001–1013 (2001).
167. Li, Z., Kruijt, J. K., van der Sluis, R. J., Van Berkel, T. J. C. & Hoekstra, M. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol. Genomics 45, 268–275 (2013).
168. Nagy, L., Szanto, A., Szatmari, I. & Széles, L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol. Rev. 92, 739–789 (2012).
169. Li, R. et al. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARγ. Am. J. Physiol. Endocrinol. Metab. 308, E270–E282 (2015).
170. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).
171. Ratziu, V. et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) trial. Gastroenterology 135, 100–110 (2008).
172. Ratziu, V. et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445–453 (2010).
173. Lemoine, M., Serfaty, L., Cervera, P., Capeau, J. & Ratziu, V. Hepatic molecular effects of rosiglitazone in human non-alcoholic steatohepatitis suggest long-term pro-inflammatory damage. Hepatol. Res. 44, 1241–1247 (2014).
174. Shafiei, M. S., Shetty, S., Scherer, P. E. & Rockey, D. C. Adiponectin regulation of stellate cell activation via PPARγ-dependent and -independent mechanisms. Am. J. Pathol. 178, 2690–2699 (2011).
175. Morán-Salvador, E. et al. Cell-specific PPARγ deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J. Hepatol. 59, 1045–1053 (2013).
176. Jiang, Y. et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator-activated receptor γ. FASEB J. 29, 1830–1841 (2015).
177. Jun, H.-J., Kim, J., Hoang, M.-H. & Lee, S.-J. Hepatic lipid accumulation alters global histone H3 lysine 9 and 4 trimethylation in the peroxisome proliferator-activated receptor α network. PLoS ONE 7, e44345 (2012).
178. Zheng, L., Lv, G., Sheng, J. & Yang, Y. Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-α expression, a novel mechanism for the pathogenesis of NAFLD. J. Gastroenterol. Hepatol. 25, 156–163 (2010).
179. Loyer, X. et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut http://dx.doi.org/10.1136/gutjnl-2014-308883 (2015). References 178 & 179 both highlight that the epigenetic regulation of PPARα via miRNAs has a role in NAFLD pathogenesis.
180. Abdelmegeed, M. A. et al. PPARα expression protects male mice from high fat-induced nonalcoholic fatty liver. J. Nutr. 141, 603–610 (2011).
181. Pawlak, M. et al. The transrepressive activity of peroxisome proliferator-activated receptor α is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60, 1593–1606 (2014). The authors show that PPARα protects from hepatic inflammation and fibrosis independently of its action on fatty acid metabolism and steatosis in the liver.
182. Montagner, A. et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214 (2016).
183. Ip, E., Farrell, G., Hall, P., Robertson, G. & Leclercq, I. Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39, 1286–1296 (2004).
184. Ip, E. et al. Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 38, 123–132 (2003).
185. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell. Metab. 21, 739–746 (2015).
186. Toyama, T. et al. PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem. Biophys. Res. Commun. 324, 697–704 (2004).
187. Pawlak, M., Baugé, E., Lalloyer, F., Lefebvre, P. & Staels, B. Ketone body therapy protects from lipotoxicity and acute liver failure upon Pparα deficiency. Mol. Endocrinol. 29, 1134–1143 (2015).
188. Vernia, S. et al. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 20, 512–525 (2014).
189. Rodríguez-Vilarrupla, A. et al. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 56, 1033–1039 (2012).
190. Laurin, J. et al. Ursodeoxycholic acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study. Hepatology 23, 1464–1467 (1996).
191. Basaranoglu, M., Acbay, O. & Sonsuz, A. A controlled trial of gemfibrozil in the treatment of patients with nonalcoholic steatohepatitis. J. Hepatol. 31, 384 (1999).
192. Fernández-Miranda, C. et al. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Dig. Liver Dis. 40, 200–205 (2008).
193. Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor δ agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012). KD3010, a new PPARβ/δ agonist displays hepatoprotective and antifibrotic properties in different models of liver injury and fibrosis, an effect not observed with another PPARβ/δ ligand, GW501516.
194. Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 536, 182–191 (2006).
195. Wu, H.-T. et al. Pharmacological activation of peroxisome proliferator-activated receptor δ improves insulin resistance and hepatic steatosis in high fat diet-induced diabetic mice. Horm. Metab. Res. 43, 631–635 (2011).
196. Lee, M. Y. et al. Peroxisome proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Exp. Mol. Med. 44, 578–585 (2012).
197. Shan, W. et al. Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicol. Sci. 105, 418–428 (2008).
198. Montagner, A., Wahli, W. & Tan, N. S. Nuclear receptor peroxisome proliferator activated receptor (PPAR) β/δ in skin wound healing and cancer. Eur. J. Dermatol.25 (Suppl. 1), 4–11 (2015).
199. Hellemans, K. et al. Peroxisome proliferator-activated receptor-β signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology124, 184–201 (2003).
200. Kostadinova, R. et al. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Biosci. 2, 34 (2012).
201. Semple, R. K., Chatterjee, V. K. K. & O'Rahilly, S. PPARγ and human metabolic disease. J. Clin. Invest. 116, 581–589 (2006).
202. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005). Pioglitazone treatment reduces adverse cardiovascular events in patients with advanced T2DM.
203. Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 374, 1321–1331 (2016).
204. Lewis, J. D. et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA 314, 265–277 (2015).
205. Levin, D. et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia 58, 493–504 (2015).
206. Tuccori, M. et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ 352, i1541 (2016).
207. Whitehead, J. P. Diabetes: new conductors for the peroxisome proliferator-activated receptor γ (PPARγ) orchestra. Int. J. Biochem. Cell Biol. 43, 1071–1074 (2011).
208. Rosenson, R. S., Wright, R. S., Farkouh, M. & Plutzky, J. Modulating peroxisome proliferator-activated receptors for therapeutic benefit? Biology, clinical experience, and future prospects. Am. Heart J. 164, 672–680 (2012).
209. Henry, R. R. et al. Effect of the dual peroxisome proliferator-activated receptor-α/γagonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 374, 126–135 (2009).
210. Lincoff, A. M. et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 311, 1515–1525 (2014).
211. Joshi, S. R. Saroglitazar for the treatment of dyslipidemia in diabetic patients. Expert Opin. Pharmacother. 16, 597–606 (2015).
212. Shetty, S. R., Kumar, S., Mathur, R. P., Sharma, K. H. & Jaiswal, A. D.Observational study to evaluate the safety and efficacy of saroglitazar in Indian diabetic dyslipidemia patients. Indian Heart J. 67, 23–26 (2015).
213. Davis, T. M. E. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54, 280–290 (2011).
214. Bonds, D. E. et al. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia 55, 1641–1650 (2012).
215. Hennuyer, N. et al. The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis 249, 200–208 (2016).
216. Ishibashi, S. et al. Effects of K-877, a novel selective PPARα modulator (SPPARMα), in dyslipidaemic patients: a randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis 249, 36–43 (2016).
217. Millar, J. S. et al. Potent and selective PPAR-α agonist LY518674 upregulates both ApoA-I production and catabolism in human subjects with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 29, 140–146 (2009).
218. Khera, A. V., Millar, J. S., Ruotolo, G., Wang, M.-D. & Rader, D. J. Potent peroxisome proliferator-activated receptor-α agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. Eur. Heart J.36, 3020–3022 (2015).
219. Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nat. Med. 10, 245–247 (2004).
220. Cymabay Therapeutics. Corporate presentation. http://content.equisolve.net/cymabay/media/9af11b3859e3b4fa04eff0f43424ffb5.pdf (2016).
221. He, B. K. et al. In vitro and in vivo characterizations of chiglitazar, a newly identified PPAR pan-agonist. PPAR Res. 2012, 546548 (2012).
222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02121717 (2016).
223. Tee, J. Phase Ib clinical trial demonstrates positive finding for a new treatment for Type 2 diabetes. Diabetes Manage. 2, 16 (2012).
224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01042106 (2013).
225. Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor α/δ agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58, 1941–1952 (2013).
226. Cariou, B., Zaïr, Y., Staels, B. & Bruckert, E. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 34, 2008–2014 (2011).
227. Cariou, B. et al. Dual peroxisome proliferator-activated receptor α/δ agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 36, 2923–2930 (2013).
228. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016). This article describes the first multicentre trial in patients with NASH showing that elafibranor can induce resolution of the disease.

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »