Skip to main content
Top

15-06-2018 | Diet | Article

Association between dietary protein intake and type 2 diabetes varies by dietary pattern

Journal: Diabetology & Metabolic Syndrome

Authors: Qiuyi Ke, Chaogang Chen, Fengyi He, Yongxin Ye, Xinxiu Bai, Li Cai, Min Xia

Publisher: BioMed Central

Abstract

Background

Epidemiological studies have demonstrated that high total protein intake was related to type 2 diabetes mellitus (T2DM) risks. However, few studies considered the impact of dietary pattern.

Objective

We examined the associations between protein intake and T2DM in different dietary patterns.

Methods

We used the demographic and dietary information of adults aged 18–75 years from the China Health and Nutrition Survey (2009), consisting of 4113 women and 4580 men. Dietary data was collected by using 24-h recalls combined with a food inventory for 3 consecutive days. Cluster analysis was used to classify subjects into groups, as determined by major sources of protein. Logistic regression models were used to calculate odds ratios (OR) and 95% confidence interval (95% CI) of T2DM according to the energy-adjusted protein intake.

Results

All participants were divided into three patterns according to the dietary source of protein (legumes and seafood, red meat, refined grains). Overall, plant protein intake was significantly and inversely associated with T2DM. In the subgroup analysis by dietary patterns, extreme quartile of plant protein intake was also inversely related to T2DM in the “legumes and seafood” group [OR = 0.58, 95% CI (0.33–0.96)]. Total protein intake and animal protein intake were positively related to T2DM in the “red meat” group [OR: 3.12 (1.65–5.91) and 3.48 (1.87–6.60), respectively]. However, the association of animal protein intake was reversed in the “refined grains” group [OR = 0.55, 95% CI 0.32–0.89].

Conclusions

The association between protein intake and T2DM varies by dietary pattern. Dietary pattern may be considered into the recommendation of protein intake for diabetes prevention.
Literature
1.
Ma RC, Lin X, Jia W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol. 2014;2:980–91.CrossRefPubMed
2.
Chan JCN, Zhang Y, Ning G. Diabetes in China: a societal solution for a personal challenge. Lancet Diabetes Endocrinol. 2014;2:969–79.CrossRefPubMed
3.
Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr. 2007;27:293–310.CrossRefPubMed
4.
Promintzer M, Krebs M. Effects of dietary protein on glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2006;9:463–8.CrossRefPubMed
5.
van Nielen M, Feskens EJ, Mensink M, Sluijs I, Molina E, Amiano P, Ardanaz E, Balkau B, Beulens JW, Boeing H, et al. Dietary protein intake and incidence of type 2 diabetes in Europe: the EPIC-InterAct Case-Cohort Study. Diabetes Care. 2014;37:1854–62.CrossRefPubMed
6.
Sluijs I, Beulens JW, van der AD, Spijkerman AM, Grobbee DE, van der Schouw YT. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010;33:43–8.CrossRefPubMed
7.
Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, Hu FB. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94:1088–96.CrossRefPubMedPubMedCentral
8.
Malik VS, Li Y, Tobias DK, Pan A, Hu FB. Dietary protein intake and risk of type 2 diabetes in US men and women. Am J Epidemiol. 2016;183:715–28.CrossRefPubMedPubMedCentral
9.
Pan A, Sun Q, Manson JE, Willett WC, Hu FB. Walnut consumption is associated with lower risk of type 2 diabetes in women. J Nutr. 2013;143:512–8.CrossRefPubMedPubMedCentral
10.
Villegas R, Gao YT, Yang G, Li HL, Elasy TA, Zheng W, Shu XO. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr. 2008;87:162–7.CrossRefPubMedPubMedCentral
11.
Popkin BM, Du S, Zhai F, Zhang B. Cohort Profile: the China Health and Nutrition Survey—monitoring and understanding socio-economic and health change in China, 1989–2011. Int J Epidemiol. 2010;39:1435–40.CrossRefPubMed
12.
Zhang B, Zhai FY, Du SF, Popkin BM. The China health and nutrition survey, 1989–2011. Obes Rev. 2014;15(Suppl 1):2–7.CrossRefPubMed
13.
Batis C, Mendez MA, Sotres-Alvarez D, Gordon-Larsen P, Popkin B. Dietary pattern trajectories during 15 years of follow-up and HbA1c, insulin resistance and diabetes prevalence among Chinese adults. J Epidemiol Community Health. 2014;68:773–9.CrossRefPubMedPubMedCentral
14.
Yan S, Li J, Li S, Zhang B, Du S, Gordon-Larsen P, Adair L, Popkin B. The expanding burden of cardiometabolic risk in China: the China Health and Nutrition Survey. Obes Rev. 2012;13:810–21.CrossRefPubMedPubMedCentral
15.
Yang Y, Wang G, Pan X. The 2002 Chinese food composition table. Beijing: Medical Publishing House of Beijing University; 2002.
16.
Yang Y-X. Chinese food composition table 2004. Beijing: Peking University Medical Press; 2005.
17.
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65:1220S–8S (discussion 1229S-1231S).CrossRefPubMed
18.
S-S Wang, Lay S, Yu H-N, Shen S-R. Dietary Guidelines for Chinese Residents (2016): comments and comparisons. J Zhejiang Univ Sci B. 2016;17:649–56.CrossRef
19.
Society CN. Chinese Dietary Reference Intakes. 1st ed. Beijing: China Light Industry Press; 2000 (in Chinese).
20.
Mangano KM, Sahni S, Kiel DP, Tucker KL, Dufour AB, Hannan MT. Bone mineral density and protein-derived food clusters from the Framingham Offspring Study. J Acad Nutr Diet. 2015;115(1605–1613):e1601.
21.
Mangano KM, Sahni S, Kiel DP, Tucker KL, Dufour AB, Hannan MT. Dietary protein is associated with musculoskeletal health independently of dietary pattern: the Framingham Third Generation Study. Am J Clin Nutr. 2017;105:714–22.CrossRefPubMedPubMedCentral
22.
Quatromoni PA, Copenhafer DL, Demissie S, D’Agostino RB, O’Horo CE, Nam BH, Millen BE. The internal validity of a dietary pattern analysis. The Framingham Nutrition Studies. J Epidemiol Community Health. 2002;56:381–8.CrossRefPubMedPubMedCentral
23.
Zhang CX, Ho SC, Fu JH, Cheng SZ, Chen YM, Lin FY. Dietary patterns and breast cancer risk among Chinese women. Cancer Causes Control. 2011;22:115–24.CrossRefPubMed
24.
Li J, Sun C, Liu S, Li Y. Dietary protein intake and type 2 diabetes among women and men in Northeast China. Sci Rep. 2016;6:37604.CrossRefPubMedPubMedCentral
25.
Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, Willett WC, Manson JE, Sun Q, Hu FB. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13:e1002039.CrossRefPubMedPubMedCentral
26.
Erber E, Hopping BN, Grandinetti A, Park SY, Kolonel LN, Maskarinec G. Dietary patterns and risk for diabetes: the multiethnic cohort. Diabetes Care. 2010;33:532–8.CrossRefPubMed
27.
Chanson-Rolle A, Meynier A, Aubin F, Lappi J, Poutanen K, Vinoy S, Braesco V. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 Diabetes. PLoS ONE. 2015;10:e0131377.CrossRefPubMedPubMedCentral
28.
He Y, Ma G, Zhai F, Li Y, Hu Y, Feskens EJ, Yang X. Dietary patterns and glucose tolerance abnormalities in Chinese adults. Diabetes Care. 2009;32:1972–6.CrossRefPubMedPubMedCentral
29.
Maghsoudi Z, Ghiasvand R, Salehi-Abargouei A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2016;19:230–41.CrossRefPubMed
30.
Villegas R, Liu S, Gao YT, Yang G, Li H, Zheng W, Shu XO. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med. 2007;167:2310–6.CrossRefPubMed
31.
Li Y, Wang DD, Ley SH, Vasanti M, Howard AG, He Y, Hu FB. Time trends of dietary and lifestyle factors and their potential impact on diabetes burden in China. Diabetes Care. 2017;40:1685–94.CrossRefPubMed
32.
Promintzer M, Krebs M. Effects of dietary protein on glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2006;9:463.CrossRefPubMed
33.
Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr. 2007;27:293.CrossRefPubMed
34.
Villegas R, Gao Y, Yang G, Li H, Elasy T, Zheng W, Shu X. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr. 2008;87:162–7.CrossRefPubMedPubMedCentral
35.
van Nielen M, Feskens EJ, Rietman A, Siebelink E, Mensink M. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity. J Nutr. 2014;144:1423–9.CrossRefPubMed
36.
Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002;76:1191–201.CrossRefPubMed
37.
Elshorbagy A, Jerneren F, Basta M, Basta C, Turner C, Khaled M, Refsum H. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur J Nutr. 2017;56:1953–62.CrossRefPubMed
38.
Paula PC, Oliveira JTA, Sousa DOB, Alves BGT, Carvalho AFU, Franco OL, Vasconcelos IM. Insulin-like plant proteins as potential innovative drugs to treat diabetes—The Moringa oleifera case study. N Biotechnol. 2017;39:99–109.CrossRefPubMed
39.
Joshi BN, Munot H, Hardikar M, Kulkarni AA. Orally active hypoglycemic protein from Costus igneus NE Br.: an in vitro and in vivo study. Biochem Biophys Res Commun. 2013;436:278–82.CrossRefPubMed
40.
Collier E, Watkinson A, Cleland CF, Roth J. Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J Biol Chem. 1987;262:6238.PubMed
41.
Cervantes-Pahm SK, Liu Y, Stein HH. Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. Br J Nutr. 2014;111:1663–72.CrossRefPubMed
42.
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.CrossRefPubMed
43.
Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164:2235–40.CrossRefPubMed
44.
Schulze MB, Manson JE, Willett WC, Hu FB. Processed meat intake and incidence of type 2 diabetes in younger and middle-aged women. Diabetologia. 2003;46:1465–73.CrossRefPubMed
45.
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring HU, Angelis MHD, Peters A. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639.CrossRefPubMedPubMedCentral
46.
Brandsch C, Shukla A, Hirche F, Stangl GI, Eder K. Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition. 2006;22:1162–70.CrossRefPubMed
47.
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.CrossRefPubMedPubMedCentral
48.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.CrossRefPubMedPubMedCentral
49.
Shamah-Levy T, Rodríguez-Ramírez S, Gaona-Pineda EB, Cuevas-Nasu L, Carriquiry AL, Rivera JA. Three 24-hour recalls in comparison with one improve the estimates of energy and nutrient intakes in an urban Mexican population. J Nutr. 2016;146:1043–50.CrossRefPubMed
50.
Willem DK, Inge H, Veerle DV, Stefanie V, Nadia S, Herman VO, Stefaan DH. Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr Res. 2011;55:122–30.CrossRef
51.
Barquera S, Hernandez-Barrera L, Campos-Nonato I, Espinosa J, Flores M, Barriguete JA, Rivera JA. Energy and nutrient consumption in adults: analysis of the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex. 2009;51(Suppl 4):S562–73.PubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »