Skip to main content
Top

13-07-2016 | Diabetic foot | Review | Article

Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer

Journal: Journal of Pharmaceutical Investigation

Authors: Hui-Chong Lau, Aeri Kim

Publisher: Springer Netherlands

Abstract

Treatment for diabetic foot ulcer (DFU) remains as one of the biggest clinical concerns in diabetic disease. DFU often causes a prolonged treatment and eventually leads to a non-healing wound ulcer. An impaired foot ulcer is often associated with a high number of amputation cases in diabetes patients. Owing to progress in the scientific research on DFU, better understanding of the mechanisms, pathophysiology of DFU has provided an insight into the advanced treatment of DFU. This includes the use of bioactive compounds and tissue engineering approach for the regeneration of damaged cells. Despite the availability of various wound treatments and dressing products in the market, most of the current products have drawbacks and limitations in terms of the pharmaceutics perspectives. Hence, pitfalls and challenges remain to develop an effective medicinal treatment product for DFU. In this paper, we discuss the current treatments available and the promising bioactive compounds for DFU. We also review advanced treatments for DFU and their limitations from the pharmaceutical point of views.
Literature
Abdullah KM, Luthra G, Bilski JJ et al (1999) Cell-to-cell communication and expression of gap junctional proteins in human diabetic and nondiabetic skin fibroblasts. Endocrine 10(1):35–41PubMedCrossRef
Akasaka Y, Ono I, Tominaga A et al (2007) Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of α-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen 15(3):378–389PubMedCrossRef
Altavilla D, Bitto A, Polito F et al (2009) Polydeoxyribonucleotide (PDRN): a safe approach to induce therapeutic angiogenesis in peripheral artery occlusive disease and in diabetic foot ulcers. Cardiovascular & Hematological Agents in Medicinal Chemistry 7(4):313–321CrossRef
Andree C, Swain WF, Page CP et al (1994) In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci 91(25):12188–12192PubMedPubMedCentralCrossRef
Andrews KL, Houdek MT, Kiemele LJ (2015) Wound management of chronic diabetic foot ulcers: from the basics to regenerative medicine. Prosthet Orthot Int 39(1):29–39PubMedCrossRef
Armstrong DG, Lavery LA, Bushman TR (1998) Peak foot pressures influence the healing time of diabetic foot ulcers treated with total contact casts. J Rehabil Res Dev 35(1):1PubMed
Armstrong DG, Wrobel J, Robbins JM (2007) Guest editorial: are diabetes-related wounds and amputations worse than cancer. Int Wound J 4(4):286–287PubMedCrossRef
Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol 139(4):510–516PubMedCrossRef
Balingit PP, Armstrong DG, Reyzelman AM et al (2012) NorLeu3-A (1–7) stimulation of diabetic foot ulcer healing: results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound Repair and Regeneration 20(4):482–490PubMed
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601PubMedCrossRef
Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22(5):569–578PubMedPubMedCentralCrossRef
Becaplermin Regranex Gel (2012) Smith and Nephew Inc (www.​regranex.​com)
Berlanga J, Fernández JI, López E et al (2013) Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Rev 15(1):11–15PubMedCrossRef
Bitar MS, Labbad ZN (1996) Transforming growth factor-β and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res 61(1):113–119PubMedCrossRef
Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 104(11):3653–3680PubMedCrossRef
Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923PubMedCrossRef
Borena BM, Martens A, Broeckx SY et al (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36(1):1–23PubMedCrossRef
Brantley JN, Verla TD (2015) Use of placental membranes for the treatment of chronic diabetic foot ulcers. Adv Wound Care 4(9):545–559CrossRef
Brown RL, Breeden MP, Greenhalgh DG (1994) PDGF and TGF-α act synergistically to improve wound healing in the genetically diabetic mouse. J Surg Res 56(6):562–570PubMedCrossRef
Chan RK, Garfein E, Gigante PR et al (2007) Side population hematopoietic stem cells promote wound healing in diabetic mice. Plast Reconstr Surg 120(2):407–411PubMedCrossRef
Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886PubMedPubMedCentralCrossRef
Chen L, Xu Y, Zhao J et al (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9(4):e96161PubMedPubMedCentralCrossRef
Choi JS, Kim JD, Yoon HS, Cho YW (2012) Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A 19(3–4):329–339PubMedPubMedCentral
Christina I Guenter LK, Shibashish Giri, Hans-Günther Machens, and Augustinus Bader (2015) First results on the three patients treated with topical recombinant human erythropoietin (rhEPO) to improve wound healing in diabetic foot ulcers. J Transplant Stem Cells Biol 2(1):4
Cohen S (1965) The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol 12(3):394–407PubMedCrossRef
Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25(7):304PubMedPubMedCentralCrossRef
Driver VR, Fabbi M, Lavery LA, Gibbons G (2010) The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg 52(3):17S–22SPubMedCrossRef
DuBose JW, Cutshall C, Metters AT (2005) Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J Biomed Mater Res Part A 74(1):104–116CrossRef
Dubský M, Jirkovská A, Bem R et al (2013) Risk factors for recurrence of diabetic foot ulcers: prospective follow-up analysis in the Eurodiale subgroup. Int Wound J 10(5):555–561PubMedCrossRef
Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19(5):894–905PubMedCrossRef
Edmonds M (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8(1):11–18PubMedCrossRef
Embil JM, Papp K, Sibbald G et al (2000) Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen 8(3):162–168PubMedCrossRef
Ertugrul BM, Buke C, Ersoy OS, Ay B, Demirez DS, Savk O (2015) Intralesional epidermal growth factor for diabetic foot wounds: the first cases in Turkey. Diabetic Foot Ankle. doi:10.​3402/​dfa.​v6.​28419 PubMedPubMedCentral
Fernández-Montequín JI, Infante-Cristiá E, Valenzuela-Silva C et al (2007) Intralesional injections of Citoprot-P®(recombinant human epidermal growth factor) in advanced diabetic foot ulcers with risk of amputation. Int Wound J 4(4):333–343PubMed
Fernández-Montequín JI, Betancourt BY, Leyva-Gonzalez G et al (2009) Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J 6(1):67–72PubMedCrossRef
Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US wound registry. Wounds 24(1):10–17PubMed
Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582CrossRef
Futrega K, King M, Lott WB, Doran MR (2014) Treating the whole not the hole: necessary coupling of technologies for diabetic foot ulcer treatment. Trends Mol Med 20(3):137–142PubMedCrossRef
Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomed Nanotechnol Biol Med 11(6):1551–1573CrossRef
Galeano M, Altavilla D, Cucinotta D et al (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53(9):2509–2517PubMedCrossRef
Galeano M, Bitto A, Altavilla D et al (2008) Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen 16(2):208–217PubMedCrossRef
Galiano RD, Tepper OM, Pelo CR et al (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947PubMedPubMedCentralCrossRef
Gibbons GW (2015) Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Adv Wound Care 4(9):534–544CrossRef
Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA (2003) The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 26(6):1790–1795PubMedCrossRef
Gottrup F, Apelqvist J (2012) Present and new techniques and devices in the treatment of DFU: a critical review of evidence. Diabetes Metabolism Res Rev 28(S1):64–71CrossRef
Gregg EW, Sorlie P, Paulose-Ram R et al (2004) Prevalence of lower-extremity disease in the US adult population ≥40 years of age with and without diabetes 1999–2000 National Health and Nutrition Examination Survey. Diabetes Care 27(7):1591–1597PubMedCrossRef
Grek CL, Prasad G, Viswanathan V, Armstrong DG, Gourdie RG, Ghatnekar GS (2015) Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: a multicenter, randomized trial. Wound Repair Regen 23(2):203–212PubMedPubMedCentralCrossRef
Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149PubMedCrossRef
Günter C, Machens H-G (2012) New strategies in clinical care of skin wound healing. Eur Surg Res 49(1):16–23PubMedCrossRef
Günter CI, Bader A, Dornseifer U et al (2013) A multi-center study on the regenerative effects of erythropoietin in burn and scalding injuries: study protocol for a randomized controlled trial. Trials 14(1):124PubMedPubMedCentralCrossRef
Hamed S, Bennett CL, Demiot C, Ullmann Y, Teot L, Desmouliere A (2014) Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen 22(1):23–33PubMedCrossRef
Hanft J, Pollak R, Barbul A et al (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care 17(1):34–37CrossRef
Heublein H, Bader A, Giri S (2015) Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds. Drug Discov Today 20(6):703–717PubMedCrossRef
Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50(10):874–875PubMedCrossRef
Hong JP, Jung HD, Kim YW (2006) Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann Plast Surg 56(4):394–398PubMedCrossRef
International Best Practice GWM, in Diabetic Foot Ulcers. (2013) Wounds Int
Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V (2013) Stem cells conditioned medium: a new approach to skin wound healing management. Cell Biol Int 37(10):1122–1128PubMedCrossRef
Kato J, Kamiya H, Himeno T et al (2014) Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complicat 28(5):588–595PubMedCrossRef
Kim NA, Lim DG, Lim JY et al (2014) Evaluation of protein formulation and its viscosity with DSC, DLS, and microviscometer. J Pharmaceut Investig 44(4):309–316CrossRef
Koob TJ, Rennert R, Zabek N et al (2013) Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 10(5):493–500PubMedPubMedCentralCrossRef
Koob TJ, Lim JJ, Massee M, Zabek N, Denoziere G (2014) Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater 102(6):1353–1362PubMedCrossRef
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35CrossRef
Krupski WC, Reilly LM, Perez S, Moss KM, Crombleholme PA, Rapp JH (1991) A prospective randomized trial of autologous platelet-derived wound healing factors for treatment of chronic nonhealing wounds: a preliminary report. J Vasc Surg 14(4):526–536PubMedCrossRef
Kusumanto Y, Van Weel V, Mulder N et al (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691PubMedCrossRef
Kwon DS, Gao X, Liu YB et al (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463PubMedCrossRef
Lavery LA, Vela SA, Lavery DC, Quebedeaux TL (1996) Reducing dynamic foot pressures in high-risk diabetic subjects with foot ulcerations: a comparison of treatments. Diabetes Care 19(8):818–821PubMedCrossRef
Lavery LA, Fulmer J, Shebetka KA et al (2014) The efficacy and safety of Grafix® for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J 11(5):554–560PubMedCrossRef
Lee PI, Kim C-J (1991) Probing the mechanisms of drug release from hydrogels. J Controll Release 16(1–2):229–236CrossRef
Li M, Zhao Y, Hao H et al (2015) Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds 14(1):73–86. doi:10.​1177/​1534734615569053​ PubMedCrossRef
Luckett L, Gallucci R (2007) Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. Br J Dermatol 156(6):1163–1171PubMedCrossRef
Luo G, Cheng W, He W et al (2010) Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound repair and regeneration 18(5):506–513PubMedCrossRef
Maderal AD, Vivas AC, Eaglstein WH, Kirsner RS (2012) The FDA and designing clinical trials for chronic cutaneous ulcers. In: Seminars in cell & developmental biology, vol 23. Elsevier, p 993–999
Marston WA, Hanft J, Norwood P, Pollak R (2003) The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers results of a prospective randomized trial. Diabetes Care 26(6):1701–1705PubMedCrossRef
Massee M, Chinn K, Lei J, Lim JJ, Young CS, Koob TJ (2015) Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro. J Biomed Mater Res B
Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037PubMedCrossRef
Mohan VK (2007) Recombinant human epidermal growth factor (REGEN-D™ 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract 78(3):405–411PubMedCrossRef
Mola EL (2012) Heberprot-P®: an idea turned into a product. Biotecnología Aplicada 29(4):262–265
Moore K, Ghatnekar G, Gourdie RG, Potts JD (2014) Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes. PLoS One 9(1):e86570PubMedPubMedCentralCrossRef
Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, Group OVUS (2005) Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41(5):837–843PubMedCrossRef
Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 9(7):7093–7114PubMedCrossRef
Myerson M, Papa J, Eaton K, Wilson K (1992) The total-contact cast for management of neuropathic plantar ulceration of the foot. J Bone Joint Surg Am 74(2):261–269PubMed
Okabe K, Hayashi R, Aramaki-Hattori N, Sakamoto Y, Kishi K (2013) Wound treatment using growth factors
Okumura M, Okuda T, Okamoto T, Nakamura T, Yajima M (1996) Enhanced angiogenesis and granulation tissue formation by basic fibroblast growth factor in healing-impaired animals. Arzneimittelforschung 46(10):1021–1026PubMed
Organogenesis (2013) DERMAGRAFT Directions for use (www.​organogenesis.​com)
Papanas D, Maltezos E (2010) Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf 33(6):455–461PubMedCrossRef
Park M-H, Baek J-S, Lee C-A, Kim D-C, Cho C-W (2014) The effect of Eudragit type on BSA-loaded PLGA nanoparticles. J Pharmaceut Investig 44(5):339–349CrossRef
Parolini O, Alviano F, Bagnara GP et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first International workshop on placenta derived stem cells. Stem Cells 26(2):300–311PubMedCrossRef
Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8(11):823–831PubMed
Rees RS, Robson MC, Smiell JM, Perry BH (1999) Becaplermin gel in the treatment of pressure ulcers: a phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen 7(3):141–147PubMedCrossRef
Rice JB, Desai U, Cummings AKG, Birnbaum HG, Skornicki M, Parsons NB (2014) Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 37(3):651–658PubMedCrossRef
Richard J-L, Parer-Richard C, Daures J-P et al (1995) Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot: a pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 18(1):64–69PubMedCrossRef
Robson MC, Phillips LG, Lawrence WT et al (1992) The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores. Ann Surg 216(4):401PubMedPubMedCentralCrossRef
Rodgers K, Abiko M, Girgis W, St Amand K, Campeau J, Dizerega G (1997) Acceleration of dermal tissue repair by angiotensin II. Wound Repair Regen 5(2):175–183PubMedCrossRef
Rodgers K, Ellefson D, Espinoza T et al (2005) Fragments of Nle3-angiotensin (1–7) accelerate healing in dermal models. J Peptide Res 66(s1):41–47
Rodgers KE, Bolton LL, Verco S, diZerega GS (2015) NorLeu3-Angiotensin (1–7)[DSC127] as a Therapy for the Healing of Diabetic Foot Ulcers. Adv Wound Care 4(6):339–345CrossRef
Saaristo A, Tammela T, Fārkkilā A et al (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169(3):1080–1087PubMedPubMedCentralCrossRef
Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587PubMedCrossRef
Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162PubMedCrossRef
Shen C, Lie P, Miao T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30PubMedPubMedCentral
Shin S-H, Ye M-K, Kim H-S, Kang H-S (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7(13):1813–1818PubMedCrossRef
Singh K, Agrawal NK, Gupta SK, Sinha P, Singh K (2016) Increased expression of TLR9 associated with pro-inflammatory S100A8 and IL-8 in diabetic wounds could lead to unresolved inflammation in type 2 diabetes mellitus (T2DM) cases with impaired wound healing. J Diabetes Complications 30(1):99–108PubMedCrossRef
Sini P, Denti A, Cattarini G, Daglio M, Tira M, Balduini C (1999) Effect of polydeoxyribonucleotides on human fibroblasts in primary culture. Cell Biochem Funct 17(2):107–114PubMedCrossRef
Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH (1999) Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 7(5):335–346PubMedCrossRef
Squadrito F, Bitto A, Altavilla D et al (2014) The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab 99(5):E746–E753PubMedCrossRef
Steed DL (2006) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 117(7S):143S–149SPubMedCrossRef
Stockl K, Vanderplas A, Tafesse E, Chang E (2004) Costs of lower-extremity ulcers among patients with diabetes. Diabetes Care 27(9):2129–2134PubMedCrossRef
Strodtbeck F (2001) Physiology of wound healing. Newborn Infant Nurs Rev 1(1):43–52CrossRef
Sun W, Sun W, Lin H et al (2007) Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 25(5):309–318PubMedCrossRef
Szlachcic A, Zakrzewska M, Otlewski J (2011) Longer action means better drug: tuning up protein therapeutics. Biotechnol Adv 29(4):436–441PubMedCrossRef
Tark K-C, Hong J-W, Kim Y-S, Hahn S-B, Lee W-J, Lew D-H (2010) Effects of human cord blood mesenchymal stem cells on cutaneous wound healing in leprdb mice. Ann Plast Surg 65(6):565–572PubMedCrossRef
Tian J, Wong KK, Ho CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2(1):129–136PubMedCrossRef
Tsang MW, Wong WKR, Hung CS et al (2003) Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 26(6):1856–1861PubMedCrossRef
Tseng SC, Espana EM, Kawakita T et al (2004) How does amniotic membrane work? The Ocular Surface 2(3):177–187PubMedCrossRef
Tuyet HL, Quynh N, Tran T et al (2009) The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J 6(2):159–166PubMedCrossRef
Uchi H, Igarashi A, Urabe K et al (2009) Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol 19(5):461–468PubMed
Walter M, Wright KT, Fuller H, MacNeil S, Johnson WEB (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281PubMedCrossRef
Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56(11):2809–2817PubMedCrossRef
Weiman T, Smiell J, Yachin S (1998) Efficacy and safety of a topical gel formulation of rh-PDGF-BB/becaplermin in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care 21:822–827CrossRef
Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870PubMed
Yan X, Chen B, Lin Y et al (2010) Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes Res Clin Pract 90(1):66–72PubMedCrossRef
Yazdanpanah L, Nasiri M, Adarvishi S (2015) Literature review on the management of diabetic foot ulcer. World J diabetes 6(1):37PubMedPubMedCentralCrossRef
Yew T-L, Hung Y-T, Li H-Y et al (2011) Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 MAPK activation. Cell Transplant 20(5):693–706PubMedCrossRef
Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93PubMedPubMedCentralCrossRef
Ziyadeh N, Fife D, Walker AM, Wilkinson GS, Seeger JD (2011) A matched cohort study of the risk of cancer in users of becaplermin. Adv Skin Wound Care 24(1):31–39PubMedCrossRef