Skip to main content
Top

06-02-2018 | Continuous glucose monitoring | Article

Association of glycaemic variability evaluated by continuous glucose monitoring with diabetic peripheral neuropathy in type 2 diabetic patients

Journal: Endocrine

Authors: Yu-ming Hu, Li-hua Zhao, Xiu-lin Zhang, Hong-li Cai, Hai-yan Huang, Feng Xu, Tong Chen, Xue-qin Wang, Ai-song Guo, Jian-an Li, Jian-bin Su

Publisher: Springer US

Abstract

Purpose

Diabetic peripheral neuropathy (DPN), a common microvascular complication of diabetes, is linked to glycaemic derangements. Glycaemic variability, as a pattern of glycaemic derangements, is a key risk factor for diabetic complications. We investigated the association of glycaemic variability with DPN in a large-scale sample of type 2 diabetic patients.

Methods

In this cross-sectional study, we enrolled 982 type 2 diabetic patients who were screened for DPN and monitored by a continuous glucose monitoring (CGM) system between February 2011 and January 2017. Multiple glycaemic variability parameters, including the mean amplitude of glycaemic excursions (MAGE), mean of daily differences (MODD), standard deviation of glucose (SD), and 24-h mean glucose (24-h MG), were calculated from glucose profiles obtained from CGM. Other possible risks for DPN were also examined.

Results

Of the recruited type 2 diabetic patients, 20.1% (n = 197) presented with DPN, and these patients also had a higher MAGE, MODD, SD, and 24-h MG than patients without DPN (p < 0.001). Using univariate and multiple logistic regression analyses, MAGE and conventional risks including diabetic duration, HOMA-IR, and hemoglobin A1c (HbA1c) were found to be independent contributors to DPN, and the corresponding odds ratios (95% confidence interval) were 4.57 (3.48–6.01), 1.10 (1.03–1.17), 1.24 (1.09–1.41), and 1.33 (1.15–1.53), respectively. Receiver operating characteristic analysis indicated that the optimal MAGE cutoff value for predicting DPN was 4.60 mmol/L; the corresponding sensitivity was 64.47%, and the specificity was 75.54%.

Conclusions

In addition to conventional risks including diabetic duration, HOMA-IR and HbA1c, increased glycaemic variability assessed by MAGE is a significant independent contributor to DPN in type 2 diabetic patients.
Literature
1.
P.R.J. Vas, M.E. Edmonds, Early recognition of diabetic peripheral neuropathy and the need for one-stop microvascular assessment. Lancet Diabetes Endocrinol. 4(9), 723–725 (2016). https://​doi.​org/​10.​1016/​s2213-8587(16)30063-8 CrossRefPubMed
2.
B.C. Callaghan, H.T. Cheng, C.L. Stables, A.L. Smith, E.L. Feldman, Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 11(6), 521–534 (2012). https://​doi.​org/​10.​1016/​s1474-4422(12)70065-0 CrossRefPubMedPubMedCentral
3.
R. Pop-Busui, J. Lu, M.M. Brooks, S. Albert, A.D. Althouse, J. Escobedo, J. Green, P. Palumbo, B.A. Perkins, F. Whitehouse, T.L. Jones, Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the bypass angioplasty revascularization investigation 2 diabetes (BARI 2D) cohort. Diabetes Care 36(10), 3208–3215 (2013). https://​doi.​org/​10.​2337/​dc13-0012 CrossRefPubMedPubMedCentral
4.
L. Monnier, C. Colette, D.R. Owens, Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: a move towards a unified glucose tetrad concept. Diabetes Metab. Res. Rev. 25(5), 393–402 (2009). https://​doi.​org/​10.​1002/​dmrr.​962 CrossRefPubMed
5.
N.R. Hill, N.S. Oliver, P. Choudhary, J.C. Levy, P. Hindmarsh, D.R. Matthews, Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol. Ther. 13(9), 921–928 (2011). https://​doi.​org/​10.​1089/​dia.​2010.​0247 CrossRefPubMedPubMedCentral
6.
C. Colette, L. Monnier, Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes. Horm. Metab. Res. 39(9), 683–686 (2007). https://​doi.​org/​10.​1055/​s-2007-985157 CrossRefPubMed
7.
G. Sartore, N.C. Chilelli, S. Burlina, A. Lapolla, Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 50(3), 437–442 (2013). https://​doi.​org/​10.​1007/​s00592-013-0459-9 CrossRefPubMed
8.
F. Xu, L.H. Zhao, J.B. Su, T. Chen, X.Q. Wang, J.F. Chen, G. Wu, Y. Jin, X.H. Wang, The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c. Diabetol. Metab. Syndr. 6(1), 139 (2014). https://​doi.​org/​10.​1186/​1758-5996-6-139 CrossRefPubMedPubMedCentral
9.
H.Y. Jin, K.A. Lee, T.S. Park, The impact of glycemic variability on diabetic peripheral neuropathy. Endocrine 53(3), 643–648 (2016). https://​doi.​org/​10.​1007/​s12020-016-1005-7 CrossRefPubMed
10.
American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62–S69 (2011). Doi:10.2337/dc11-S062.
11.
S. Tesfaye, A.J. Boulton, P.J. Dyck, R. Freeman, M. Horowitz, P. Kempler, G. Lauria, R.A. Malik, V. Spallone, A. Vinik, L. Bernardi, P. Valensi, Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10), 2285–2293 (2010). https://​doi.​org/​10.​2337/​dc10-1303 CrossRefPubMedPubMedCentral
12.
Chinese Diabetes Society, Chinese clinical guideline for continuous glucose monitoring (2012). Chin. Med. J. 125(23), 4167–4174 (2012). https://​doi.​org/​10.​3760/​cma.​j.​issn.​0366-6999.​2012.​23.​002
13.
D. Rodbard, New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 11(9), 551–565 (2009). https://​doi.​org/​10.​1089/​dia.​2009.​0015 CrossRefPubMed
14.
F.J. Service, Glucose variability. Diabetes 62(5), 1398–1404 (2013). https://​doi.​org/​10.​2337/​db12-1396 CrossRefPubMedPubMedCentral
15.
M. Ohara, T. Fukui, M. Ouchi, K. Watanabe, T. Suzuki, S. Yamamoto, T. Yamamoto, T. Hayashi, K. Oba, T. Hirano, Relationship between daily and day-to-day glycemic variability and increased oxidative stress in type 2 diabetes. Diabetes Res. Clin. Pract. 122, 62–70 (2016). https://​doi.​org/​10.​1016/​j.​diabres.​2016.​09.​025 CrossRefPubMed
16.
A. Ceriello, M.A. Ihnat, ‘Glycaemic variability’: a new therapeutic challenge in diabetes and the critical care setting. Diabet. Med. 27(8), 862–867 (2010). https://​doi.​org/​10.​1111/​j.​1464-5491.​2010.​02967.​x CrossRefPubMed
17.
L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295(14), 1681–1687 (2006). https://​doi.​org/​10.​1001/​jama.​295.​14.​1681 CrossRefPubMed
18.
K. Torimoto, Y. Okada, H. Mori, Y. Tanaka, Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc. Diabetol. 12, 1 (2013). https://​doi.​org/​10.​1186/​1475-2840-12-1 CrossRefPubMedPubMedCentral
19.
P.S. Dasari, B.S. Gandomani, A.M. Teague, A. Pitale, M. Otto, K.R. Short, Glycemic variability is associated with markers of vascular stress in adolescents. J. Pediatr. 172, 47–55 e42 (2016). https://​doi.​org/​10.​1016/​j.​jpeds.​2016.​01.​065 CrossRefPubMed
20.
G. Su, S. Mi, H. Tao, Z. Li, H. Yang, H. Zheng, Y. Zhou, C. Ma, Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc. Diabetol. 10, 19 (2011). https://​doi.​org/​10.​1186/​1475-2840-10-19 CrossRefPubMedPubMedCentral
21.
G. Su, S.H. Mi, H. Tao, Z. Li, H.X. Yang, H. Zheng, Y. Zhou, L. Tian, Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care 36(4), 1026–1032 (2013). https://​doi.​org/​10.​2337/​dc12-0925 CrossRefPubMedPubMedCentral
22.
C.M. Chang, C.J. Hsieh, J.C. Huang, I.C. Huang, Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol. 49(Suppl 1), S171–177 (2012). https://​doi.​org/​10.​1007/​s00592-012-0398-x CrossRefPubMed
23.
C. Gorst, C.S. Kwok, S. Aslam, I. Buchan, E. Kontopantelis, P.K. Myint, G. Heatlie, Y. Loke, M.K. Rutter, M.A. Mamas, Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38(12), 2354–2369 (2015). https://​doi.​org/​10.​2337/​dc15-1188 CrossRefPubMed
24.
A.O. Luk, R.C. Ma, E.S. Lau, X. Yang, W.W. Lau, L.W. Yu, F.C. Chow, J.C. Chan, W.Y. So, Risk association of HbA1c variability with chronic kidney disease and cardiovascular disease in type 2 diabetes: prospective analysis of the Hong Kong Diabetes Registry. Diabetes Metab. Res. Rev. 29(5), 384–390 (2013). https://​doi.​org/​10.​1002/​dmrr.​2404 CrossRefPubMed
25.
J.E. Jun, S.M. Jin, J. Baek, S. Oh, K.Y. Hur, M.S. Lee, M.K. Lee, J.H. Kim, The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc. Diabetol. 14, 70 (2015). https://​doi.​org/​10.​1186/​s12933-015-0233-0 CrossRefPubMedPubMedCentral
26.
C.C. Lin, C.C. Chen, F.N. Chen, C.I. Li, C.S. Liu, W.Y. Lin, S.Y. Yang, C.C. Lee, T.C. Li, Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose. Am. J. Med. 126(11), 1017. e1011–1010 (2013). https://​doi.​org/​10.​1016/​j.​amjmed.​2013.​04.​015 CrossRef
27.
C.C. Lin, C.P. Yang, C.I. Li, C.S. Liu, C.C. Chen, W.Y. Lin, K.L. Hwang, S.Y. Yang, T.C. Li, Visit-to-visit variability of fasting plasma glucose as predictor of ischemic stroke: competing risk analysis in a national cohort of Taiwan Diabetes Study. BMC Med. 12, 165 (2014). https://​doi.​org/​10.​1186/​s12916-014-0165-7 CrossRefPubMedPubMedCentral
28.
H.T. Chiu, T.C. Li, C.I. Li, C.S. Liu, W.Y. Lin, C.C. Lin, Visit-to-visit glycemic variability is a strong predictor of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: Competing risk analysis using a national cohort from the Taiwan diabetes study. PLoS One 12(5), e0177184 (2017). https://​doi.​org/​10.​1371/​journal.​pone.​0177184 CrossRefPubMedPubMedCentral
29.
T.C. Li, C.P. Yang, S.T. Tseng, C.I. Li, C.S. Liu, W.Y. Lin, K.L. Hwang, S.Y. Yang, J.H. Chiang, C.C. Lin, Visit-to-visit variations in fasting plasma glucose and HbA1c associated with an increased risk of alzheimer disease: Taiwan Diabetes Study. Diabetes Care 40(9), 1210–1217 (2017). https://​doi.​org/​10.​2337/​dc16-2238 CrossRefPubMed
30.
J.I. Chiang, T.C. Li, C.I. Li, C.S. Liu, N.H. Meng, W.Y. Lin, S.Y. Yang, H.J. Chen, C.C. Lin, Visit-to-visit variation of fasting plasma glucose is a predictor of hip fracture in older persons with type 2 diabetes: the Taiwan Diabetes Study. Osteoporos. Int. 27(12), 3587–3597 (2016). https://​doi.​org/​10.​1007/​s00198-016-3689-1 CrossRefPubMed
31.
C.C. Lin, C.I. Li, C.S. Liu, W.Y. Lin, C.C. Chen, S.Y. Yang, C.C. Lee, T.C. Li, Annual fasting plasma glucose variation increases risk of cancer incidence and mortality in patients with type 2 diabetes: the Taichung Diabetes Study. Endocr. Relat. Cancer 19(4), 473–483 (2012). https://​doi.​org/​10.​1530/​erc-12-0038 CrossRefPubMed
32.
C.C. Lin, C.I. Li, S.Y. Yang, C.S. Liu, C.C. Chen, M.M. Fuh, W. Chen, T.C. Li, Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am. J. Med. 125(4), 416. e419–418 (2012). https://​doi.​org/​10.​1016/​j.​amjmed.​2011.​07.​027 CrossRef
33.
P. Katulanda, P. Ranasinghe, R. Jayawardena, G.R. Constantine, M.H. Sheriff, D.R. Matthews, The prevalence, patterns and predictors of diabetic peripheral neuropathy in a developing country. Diabetol. Metab. Syndr. 4(1), 21 (2012). https://​doi.​org/​10.​1186/​1758-5996-4-21 CrossRefPubMedPubMedCentral
34.
J.C. Won, H.S. Kwon, C.H. Kim, J.H. Lee, T.S. Park, K.S. Ko, B.Y. Cha, Prevalence and clinical characteristics of diabetic peripheral neuropathy in hospital patients with Type 2 diabetes in Korea. Diabet. Med. 29(9), e290–296 (2012). https://​doi.​org/​10.​1111/​j.​1464-5491.​2012.​03697.​x CrossRefPubMed
35.
D. Selvarajah, I.D. Wilkinson, C.J. Emery, N.D. Harris, P.J. Shaw, D.R. Witte, P.D. Griffiths, S. Tesfaye, Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 29(12), 2664–2669 (2006). https://​doi.​org/​10.​2337/​dc06-0650 CrossRefPubMed
36.
C. Clair, M.J. Cohen, F. Eichler, K.J. Selby, N.A. Rigotti, The effect of cigarette smoking on diabetic peripheral neuropathy: a systematic review and meta-analysis. J. Gen. Intern. Med 30(8), 1193–1203 (2015). https://​doi.​org/​10.​1007/​s11606-015-3354-y CrossRefPubMedPubMedCentral
37.
X. Qiao, H. Zheng, S. Zhang, S. Liu, Q. Xiong, F. Mao, Z. Zhang, J. Wen, H. Ye, Y. Li, B. Lu, C-peptide is independent associated with diabetic peripheral neuropathy: a community-based study. Diabetol. Metab. Syndr. 9, 12 (2017). https://​doi.​org/​10.​1186/​s13098-017-0208-2 CrossRefPubMedPubMedCentral
38.
E.S. Kim, S.W. Lee, E.Y. Mo, S.D. Moon, J.H. Han, Inverse association between serum total bilirubin levels and diabetic peripheral neuropathy in patients with type 2 diabetes. Endocrine 50(2), 405–412 (2015). https://​doi.​org/​10.​1007/​s12020-015-0583-0 CrossRefPubMed
39.
Y. Hu, F. Liu, J. Shen, H. Zeng, L. Li, J. Zhao, J. Zhao, F. Lu, W. Jia, Association between serum cystatin C and diabetic peripheral neuropathy: a cross-sectional study of a Chinese type 2 diabetic population. Eur. J. Endocrinol. 171(5), 641–648 (2014). https://​doi.​org/​10.​1530/​eje-14-0381 CrossRefPubMed
40.
R. He, Y. Hu, H. Zeng, J. Zhao, J. Zhao, Y. Chai, F. Lu, F. Liu, W. Jia, Vitamin D deficiency increases the risk of peripheral neuropathy in Chinese patients with type 2 diabetes. Diabetes Metab. Res. Rev. 33(2), e2820 (2017). https://​doi.​org/​10.​1002/​dmrr.​2820 CrossRef
41.
W. Zhao, H. Zeng, X. Zhang, F. Liu, J. Pan, J. Zhao, J. Zhao, L. Li, Y. Bao, F. Liu, W. Jia, A high thyroid stimulating hormone level is associated with diabetic peripheral neuropathy in type 2 diabetes patients. Diabetes Res. Clin. Pract. 115, 122–129 (2016). https://​doi.​org/​10.​1016/​j.​diabres.​2016.​01.​018 CrossRefPubMed
42.
S. Yu, Y. Chen, X. Hou, D. Xu, K. Che, C. Li, S. Yan, Y. Wang, B. Wang, Serum uric acid levels and diabetic peripheral neuropathy in type 2 diabetes: a systematic review and meta-analysis. Mol. Neurobiol. 53(2), 1045–1051 (2016). https://​doi.​org/​10.​1007/​s12035-014-9075-0 CrossRefPubMed
43.
Y. Zhang, Y. Jiang, X. Shen, S. Yan, Can both normal and mildly abnormal albuminuria and glomerular filtration rate be a danger signal for diabetic peripheral neuropathy in type 2 diabetes mellitus? Neurol. Sci. 38(8), 1381–1390 (2017). https://​doi.​org/​10.​1007/​s10072-017-2946-1 CrossRefPubMed
44.
A. Tentolouris, I. Eleftheriadou, P. Grigoropoulou, A. Kokkinos, G. Siasos, I. Ntanasis-Stathopoulos, N. Tentolouris, The association between pulse wave velocity and peripheral neuropathy in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 31(11), 1624–1629 (2017). https://​doi.​org/​10.​1016/​j.​jdiacomp.​2017.​07.​010 CrossRefPubMed
45.
S. Liu, H. Zheng, X. Zhu, F. Mao, S. Zhang, H. Shi, Y. Li, B. Lu, Neutrophil-to-lymphocyte ratio is associated with diabetic peripheral neuropathy in type 2 diabetes patients. Diabetes Res. Clin. Pract. 130, 90–97 (2017). https://​doi.​org/​10.​1016/​j.​diabres.​2017.​05.​008 CrossRefPubMed
46.
T. Zhu, Q. Meng, J. Ji, X. Lou, L. Zhang, Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy. Neurosci. Lett. 585, 28–32 (2015). https://​doi.​org/​10.​1016/​j.​neulet.​2014.​11.​020 CrossRefPubMed
47.
C. Herder, I. Schamarek, B. Nowotny, M. Carstensen-Kirberg, K. Strassburger, P. Nowotny, J.M. Kannenberg, A. Strom, S. Puttgen, K. Mussig, J. Szendroedi, M. Roden, D. Ziegler, Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart 103(1), 63–70 (2017). https://​doi.​org/​10.​1136/​heartjnl-2015-309181 CrossRefPubMed
48.
M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865), 813–820 (2001). https://​doi.​org/​10.​1038/​414813a CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »