Skip to main content
Top

05-06-2018 | Cardiovascular outcomes | Review | Article

Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: a comprehensive network meta-analysis of 166,371 participants from 170 randomized controlled trials

Journal: Cardiovascular Diabetology

Authors: Xiao-dong Zhuang, Xin He, Da-ya Yang, Yue Guo, Jian-gui He, Hai-peng Xiao, Xin-xue Liao

Publisher: BioMed Central

Abstract

Background

Cardiovascular (CV) safety of one anti-diabetic medication over another remains partially delineated. We sought to assess the comparative effect on CV outcomes among novel anti-diabetic agents.

Methods

This study was registered with the International Prospective Register of Systematic Reviews (CRD 42016042063). MEDLINE, EMBASE, and Cochrane Library Central Register of Controlled Trials were searched between Jan 1, 1980, and June 30, 2016. Randomized controlled trials comparing anti-diabetic drugs with other comparators in adults with type 2 diabetes were included. We used network meta-analysis to obtain estimates for the outcomes of interests. In addition, post hoc correlation analysis of severe hypoglycemia and primary outcome as per ranking order was conducted. Outcomes were major adverse cardiovascular events (MACE) and all-cause mortality.

Results

A total of 170 trials (166,371 participants) were included. By class and by individual, sulfonylureas (SU) ranked last. Therefore, with SU as reference, categorically sodium-glucose co-transporter 2 inhibitor (SGLT2i), insulin (INS), glucagon-like peptide-1 receptor agonist, and dipeptidyl peptidase 4 inhibitor were significantly superior in term of MACE; as were SGLT2i and INS in term of all-cause mortality. Moreover, ranking orders of MACE and all-cause mortality were both positively correlated with that of severe hypoglycemia risk (by individual: R2 = 0.3178, P = 0.018; by class: R2 = 0.2574, P = 0.038).

Conclusions

Novel anti-diabetic agents possess favorable CV safety profile, despite small but robust differences between individuals. In addition, increase in CV risk was again shown to be partly attributable to a concomitant increase in the risk of severe hypoglycemia, for which SU performed the worst.
Literature
1.
Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol. 2016;15:37. https://​doi.​org/​10.​1186/​s12933-016-0356-y.CrossRefPubMedPubMedCentral
2.
Fisher M, Petrie MC, Ambery PD, Donaldson J, Ye J, McMurray JJ. Cardiovascular safety of albiglutide in the Harmony programme: a meta-analysis. Lancet Diabetes Endocrinol. 2015;3:697–703. https://​doi.​org/​10.​1016/​S2213-8587(15)00233-8.CrossRefPubMed
3.
Savarese G, D’Amore C, Federici M, De Martino F, Dellegrottaglie S, Marciano C. Effects of dipeptidyl peptidase 4 inhibitors and sodium-glucose linked cotransporter-2 Inhibitors on cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis. Int J Cardiol. 2016;220:595–601. https://​doi.​org/​10.​1016/​j.​ijcard.​2016.​06.​208.CrossRefPubMed
4.
Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47. https://​doi.​org/​10.​1111/​dom.​12175.CrossRefPubMed
5.
Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundstrom J. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4:411–9. https://​doi.​org/​10.​1016/​S2213-8587(16)00052-8.CrossRefPubMed
6.
Ferdinand KC, Botros FT, Atisso CM, Sager PT. Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2016;15:38. https://​doi.​org/​10.​1186/​s12933-016-0355-z.CrossRefPubMedPubMedCentral
7.
Verma S, Goldenberg RM, Bhatt DL, Farkouh ME, Quan A, Teoh H. Dipeptidyl peptidase-4 inhibitors and the risk of heart failure: a systematic review and meta-analysis. CMAJ Open. 2017;5:E152–77. https://​doi.​org/​10.​9778/​cmajo.​20160058.CrossRefPubMedPubMedCentral
8.
Zhang Z, Chen X, Lu P, Zhang J, Xu Y, He W. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovasc Diabetol. 2017;16:31. https://​doi.​org/​10.​1186/​s12933-017-0512-z.CrossRefPubMedPubMedCentral
9.
Hoogwerf BJ, Lincoff AM, Rodriguez A, Chen L, Qu Y. Major adverse cardiovascular events with basal insulin peglispro versus comparator insulins in patients with type 1 or type 2 diabetes: a meta-analysis. Cardiovasc Diabetol. 2016;15:78. https://​doi.​org/​10.​1186/​s12933-016-0393-6.CrossRefPubMedPubMedCentral
10.
Tang H, Fang Z, Wang T, Cui W, Zhai S, Song Y. Meta-analysis of effects of sodium-glucose cotransporter 2 inhibitors on cardiovascular outcomes and all-cause mortality among patients with type 2 diabetes mellitus. Am J Cardiol. 2016;118:1774–80. https://​doi.​org/​10.​1016/​j.​amjcard.​2016.​08.​061.CrossRefPubMed
11.
Fei Y, Tsoi MF, Kumana CR, Cheung TT, Cheung B. Network meta-analysis of cardiovascular outcomes in randomized controlled trials of new antidiabetic drugs. Int J Cardiol. 2018;254:291–6. https://​doi.​org/​10.​1016/​j.​ijcard.​2017.​12.​039.CrossRefPubMed
12.
Tsioufis C, Andrikou E, Thomopoulos C, Papanas N, Tousoulis D. Oral glucose-lowering drugs and cardiovascular outcomes: from the negative RECORD and ACCORD to neutral TECOS and promising EMPA-REG. Curr Vasc Pharmacol. 2017;15:457–68. https://​doi.​org/​10.​2174/​1570161114666161​208150642.CrossRefPubMed
13.
de Jong M, van der Worp HB, van der Graaf Y, Visseren F, Westerink J. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol. 2017;16:134. https://​doi.​org/​10.​1186/​s12933-017-0617-4.CrossRefPubMedPubMedCentral
14.
Lam KS, Chow CC, Tan KC, Ma RC, Kong AP, Tong PC. Practical considerations for the use of sodium-glucose co-transporter type 2 inhibitors in treating hyperglycemia in type 2 diabetes. Curr Med Res Opin. 2016;32:1097–108. https://​doi.​org/​10.​1185/​03007995.​2016.​1161608.CrossRefPubMed
15.
Wang MT, Lin SC, Tang PL, Hung WT, Cheng CC, Yang JS. The impact of DPP-4 inhibitors on long-term survival among diabetic patients after first acute myocardial infarction. Cardiovasc Diabetol. 2017;16:89. https://​doi.​org/​10.​1186/​s12933-017-0572-0.CrossRefPubMedPubMedCentral
16.
Schernthaner G, Lehmann R, Prazny M, Czupryniak L, Ducena K, Fasching P. Translating recent results from the Cardiovascular Outcomes Trials into clinical practice: recommendations from the Central and Eastern European Diabetes Expert Group (CEEDEG). Cardiovasc Diabetol. 2017;16:137. https://​doi.​org/​10.​1186/​s12933-017-0622-7.CrossRefPubMedPubMedCentral
17.
Schnell O, Ryden L, Standl E, Ceriello A. Updates on cardiovascular outcome trials in diabetes. Cardiovasc Diabetol. 2017;16:128. https://​doi.​org/​10.​1186/​s12933-017-0610-y.CrossRefPubMedPubMedCentral
18.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12. https://​doi.​org/​10.​1016/​j.​jclinepi.​2009.​06.​005.CrossRefPubMed
19.
Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331:897–900. https://​doi.​org/​10.​1136/​bmj.​331.​7521.​897.CrossRefPubMedPubMedCentral
20.
Green S, Higgins JPT. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.
21.
White IR. Multivariate random-effects meta-regression: updates to mvmeta. Stata J. 2011;11:255–70.
22.
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71. https://​doi.​org/​10.​1016/​j.​jclinepi.​2010.​03.​016.CrossRefPubMed
23.
White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25. https://​doi.​org/​10.​1002/​jrsm.​1045.CrossRefPubMedPubMedCentral
24.
Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. Int J Epidemiol. 2013;42:332–45. https://​doi.​org/​10.​1093/​ije/​dys222.CrossRefPubMedPubMedCentral
25.
Smith RJ, Goldfine AB, Hiatt WR. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39:738–42. https://​doi.​org/​10.​2337/​dc15-2237.CrossRefPubMed
26.
Steg PG, Roussel R. Randomized trials to evaluate cardiovascular safety of antihyperglycemic medications: a worthwhile effort? Circulation. 2016;134:571–3. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​116.​021914.CrossRefPubMed
27.
Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147:386–99.CrossRefPubMed
28.
Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154:602–13. https://​doi.​org/​10.​7326/​0003-4819-154-9-201105030-00336.CrossRefPubMedPubMedCentral
29.
Tschope D, Bramlage P, Binz C, Krekler M, Plate T, Deeg E. Antidiabetic pharmacotherapy and anamnestic hypoglycemia in a large cohort of type 2 diabetic patients—an analysis of the DiaRegis registry. Cardiovasc Diabetol. 2011;10:66. https://​doi.​org/​10.​1186/​1475-2840-10-66.CrossRefPubMedPubMedCentral
30.
Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36:1384–95. https://​doi.​org/​10.​2337/​dc12-2480.CrossRefPubMedPubMedCentral
31.
Zimmerman BR. Sulfonylureas. Endocrinol Metab Clin N Am. 1997;26:511–22.CrossRef
32.
Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157:601–10. https://​doi.​org/​10.​7326/​0003-4819-157-9-201211060-00003.CrossRefPubMedPubMedCentral
33.
Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ. 2009;339:b4731.CrossRefPubMedPubMedCentral
34.
Fisman EZ, Tenenbaum A, Boyko V, Benderly M, Adler Y, Friedensohn A. Oral antidiabetic treatment in patients with coronary disease: time-related increased mortality on combined glyburide/metformin therapy over a 7.7-year follow-up. Clin Cardiol. 2001;24:151–8.CrossRefPubMed
35.
Rao AD, Kuhadiya N, Reynolds K, Fonseca VA. Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality?: a meta-analysis of observational studies. Diabetes Care. 2008;31:1672–8. https://​doi.​org/​10.​2337/​dc08-0167.CrossRefPubMedPubMedCentral
36.
Currie CJ, Poole CD, Evans M, Peters JR, Morgan CL. Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes. J Clin Endocrinol Metab. 2013;98:668–77. https://​doi.​org/​10.​1210/​jc.​2012-3042.CrossRefPubMedPubMedCentral
37.
Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316:313–24. https://​doi.​org/​10.​1001/​jama.​2016.​9400.CrossRefPubMed
38.
Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16:18. https://​doi.​org/​10.​1186/​s12933-017-0499-5.CrossRefPubMedPubMedCentral
39.
Genuth S. Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, it’s time to move on! Diabetes Care. 2015;38:170–5. https://​doi.​org/​10.​2337/​dc14-0565.CrossRefPubMed
40.
Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2016 executive summary. Endocr Pract. 2016;22:84–113. https://​doi.​org/​10.​4158/​EP151126.​CS.CrossRefPubMed
41.
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89. https://​doi.​org/​10.​1056/​NEJMoa0806470.CrossRefPubMed
42.
Cobitz A, Zambanini A, Sowell M, Heise M, Louridas B, McMorn S. A retrospective evaluation of congestive heart failure and myocardial ischemia events in 14,237 patients with type 2 diabetes mellitus enrolled in 42 short-term, double-blind, randomized clinical studies with rosiglitazone. Pharmacoepidemiol Drug Saf. 2008;17:769–81. https://​doi.​org/​10.​1002/​pds.​1615.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »