Skip to main content

02-02-2017 | Cardiovascular outcomes | Review | Article

Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes

Journal: Cardiovascular Diabetology

Authors: James Xu, Rohan Rajaratnam

Publisher: BioMed Central



Patients with type 2 diabetes mellitus have a twofold increased risk of cardiovascular mortality compared with non-diabetic individuals. There is a growing awareness that glycemic efficacy of anti-diabetic drugs does not necessarily translate to cardiovascular safety. Over the past few years, there has been a number of trials evaluating the cardiovascular effects of anti-diabetic drugs. In this review, we seek to examine the cardiovascular safety of these agents in major published trials. Metformin has with-stood the test of time and remains the initial drug of choice. The sulfonylureas, despite being the oldest oral anti-diabetic drug, has been linked to adverse cardiovascular events and are gradually being out-classed by the various other second-line agents. The glitazones are contraindicated in heart failure. The incretin-based drugs have been at the fore-front of this era of cardiovascular safety trials and their performances have been reassuring, whereas the meglitinides and the alpha-glucosidase inhibitors still lack cardiovascular outcomes data. The sodium glucose cotransporter-2 inhibitors are an exciting new addition that has demonstrated a potential for cardiovascular benefit. Many of the currently available oral anti-diabetic agents have clinically relevant cardiovascular effects. The optimal approach to the reduction of cardiovascular risk in diabetic patients should focus on aggressive management of the standard cardiovascular risk factors rather than purely on intensive glycemic control.
Preis SR, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119(13):1728–35. CrossRefPubMedPubMedCentral
Gerstein HC, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59. CrossRefPubMed
Patel A, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. CrossRefPubMed
Duckworth W, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39. CrossRefPubMed
Holman RR, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. CrossRefPubMed
Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs–insights from the rosiglitazone experience. N Engl J Med. 2013;369(14):1285–7. CrossRefPubMed
WHO. Model lists of essential medicines. 2015 April 2015. http://​www.​who.​int/​medicines/​publications/​essentialmedicin​es/​en/​. Accessed 14 May 2016.
Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56. CrossRefPubMed
DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333(9):541–9. CrossRefPubMed
Knowler WC, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–86. CrossRefPubMed
Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574–9. CrossRefPubMed
Bakhashab S, et al. Metformin improves the angiogenic potential of human CD34(+) cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol. 2016;15:27. CrossRefPubMedPubMedCentral
Ahmed FW, et al. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol. 2016;15(1):116. CrossRefPubMedPubMedCentral
Yu JW, et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:88. CrossRefPubMedPubMedCentral
United Kingdom Prospective Diabetes Study. 34: effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. The Lancet. 1998;352(9131):854–65. CrossRef
Lamanna C, et al. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2011;13(3):221–8. CrossRefPubMed
Saenz A, et al. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;3:CD002966.
Eurich DT, et al. Changes in labelling for metformin use in patients with type 2 diabetes and heart failure: documented safety outweighs theoretical risks. Open Med. 2011;5(1):e33–4. PubMedPubMedCentral
Eurich DT, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail. 2013;6(3):395–402. CrossRefPubMed
Kao J, et al. Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol. 2004;93(11):1347–50. CrossRefPubMed
Goergen SK, et al. Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology. 2010;254(1):261–9. CrossRefPubMed
Baerlocher MO, Asch M, Myers A. Five things to know about…metformin and intravenous contrast. Can Med Assoc J. 2013;185(1):E78. CrossRef
Inzucchi SE, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9. CrossRefPubMed
Garber AJ, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm—2016 Executive Summary. Endocr Pract. 2016;22(1):84–113. CrossRefPubMed
Sola D, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840–8. CrossRefPubMedPubMedCentral
Proks P, et al. Sulfonylurea Stimulation of Insulin Secretion. Diabetes. 2002;51(Supplement 3):S368–76. CrossRefPubMed
Hemmingsen B, et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;4:9008.
United Kingdom Prospective Diabetes Study. 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med. 1998;128(3):165. CrossRef
Massi-Benedetti M. Glimerpiride in type 2 diabetes mellitus: a review of the worldwide therapeutic experience. Clin Ther. 2003;25(3):799–816. CrossRefPubMed
Lawrence CL, et al. Effect of metabolic inhibition on glimepiride block of native and cloned cardiac sarcolemmal K(ATP) channels. Br J Pharmacol. 2002;136(5):746–52. CrossRefPubMedPubMedCentral
American Diabetes Association. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: VI Supplementary report on nonfatal events in patients treated with tolbutamide. Diabetes. 1976;25(12):1129–53. CrossRef
Garratt KN, et al. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol. 1999;33(1):119–24. CrossRefPubMed
Simpson SH, et al. Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. Can Med Assoc J. 2006;174(2):169–74. CrossRef
Roumie CL, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157(9):601–10. CrossRefPubMedPubMedCentral
Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–53. CrossRefPubMed
Giblett JP, et al. Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies. Cardiovasc Diabetol. 2016;15:99. CrossRefPubMedPubMedCentral
Simpson SH, et al. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51. CrossRefPubMed
Fuhlendorff J, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes. 1998;47(3):345–51. CrossRefPubMed
Azimova K, San Z. Juan, and D. Mukherjee, Cardiovascular safety profile of currently available diabetic drugs. Ochsner J. 2014;14(4):616–32. PubMedPubMedCentral
Black C, et al. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;2:4654.
Holman RR, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76. CrossRefPubMed
Schramm TK, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32(15):1900–8. CrossRefPubMed
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J. 2015;36(34):2288–96. CrossRefPubMed
Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18. CrossRefPubMed
Goldberg RB, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28(7):1547–54. CrossRefPubMed
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. CrossRefPubMed
Home PD, et al. Rosiglitazone evaluated for cardiovascular outcomes–an interim analysis. N Engl J Med. 2007;357(1):28–38. CrossRefPubMed
Home PD, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35. CrossRefPubMed
Dormandy JA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89. CrossRefPubMed
Lincoff AM, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180–8. CrossRefPubMed
Hernandez AV, et al. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs. 2011;11(2):115–28. CrossRefPubMed
Gerstein HC, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9541):1096–105. CrossRefPubMed
Ponikowski P, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016.
Krische D. The glitazones: proceed with caution. West J Med. 2000;173(1):54–7. CrossRefPubMed
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512. CrossRefPubMedPubMedCentral
Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 2007;298(2):194–206. CrossRefPubMed
Craddy P, Palin HJ, Johnson KI. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: a systematic review and mixed treatment comparison. Diabetes Ther. 2014;5(1):1–41. CrossRefPubMedPubMedCentral
Davidson JA. Advances in therapy for type 2 diabetes: GLP-1 receptor agonists and DPP-4 inhibitors. Cleve Clin J Med. 2009;76(Suppl 5):S28–38. CrossRefPubMed
Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vasc Pharmacol. 2011;55(1–3):10–6. CrossRef
Scirica BM, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. CrossRefPubMed
Scirica BM, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579–88. CrossRefPubMed
White WB, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35. CrossRefPubMed
Zannad F, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–76. CrossRefPubMed
Green JB, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232–42. CrossRefPubMed
Nakamura T, et al. Cardiovascular efficacy of sitagliptin in patients with diabetes at high risk of cardiovascular disease: a 12- month follow- up. Cardiovasc Diabetol. 2016;15:54. CrossRefPubMedPubMedCentral
Maruhashi T, et al. Long- term effect of sitagliptin on endothelial function in type 2 diabetes: a sub- analysis of the PROLOGUE study. Cardiovasc Diabetol. 2016;15(1):134. CrossRefPubMedPubMedCentral
Rosenstock J, et al. Cardiovascular safety of linagliptin in type 2 diabetes: a comprehensive patient-level pooled analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2015;14:57. CrossRefPubMedPubMedCentral
Li L, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ. 2016;352:i610. CrossRefPubMedPubMedCentral
Filion KB, et al. A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med. 2016;374(12):1145–54. CrossRefPubMed
Toh S, et al. Risk for hospitalized heart failure among new users of saxagliptin, sitagliptin, and other antihyperglycemic drugs: a retrospective cohort study. Ann Intern Med. 2016;164(11):705–14. CrossRefPubMed
Ou HT, et al. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with type 2 diabetes: a nation-wide longitudinal study. Cardiovasc Diabetol. 2016;15:41. CrossRefPubMedPubMedCentral
FDA drug safety communication: FDA adds warnings about heart failure risk to labels of type 2 diabetes medicines containing saxagliptin and alogliptin. 2016. http://​www.​fda.​gov/​Drugs/​DrugSafety/​ucm486096.​htm. Accessed 23 May 2016.
Shyangdan DS, et al. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;10:CD006423.
Sun F, et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis. Clin Ther. 2015;37(1):225–41. CrossRefPubMed
Katout M, et al. Effect of GLP-1 mimetics on blood pressure and relationship to weight loss and glycemia lowering: results of a systematic meta-analysis and meta-regression. Am J Hypertens. 2014;27(1):130–9. CrossRefPubMed
Lebovitz HE, Banerji MA. Non-insulin injectable treatments (glucagon-like peptide-1 and its analogs) and cardiovascular disease. Diabetes Technol Ther. 2012;14(Suppl 1):S43–50. PubMed
Angeli FS, Shannon RP. Incretin-based therapies: can we achieve glycemic control and cardioprotection? J Endocrinol. 2014;221(1):T17–30. CrossRefPubMed
Pfeffer MA, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. CrossRefPubMed
Marso SP, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. CrossRefPubMedPubMedCentral
Kumarathurai P, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc Diabetol. 2016;15(1):105. CrossRefPubMedPubMedCentral
Marso SP, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. CrossRefPubMed
Ferdinand KC, et al. Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol. 2016;15:38. CrossRefPubMedPubMedCentral
Clar C, et al. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):e001007. CrossRefPubMedPubMedCentral
Hanefeld M, Forst T. Dapagliflozin, an SGLT2 inhibitor, for diabetes. Lancet. 2010;375(9733):2196–8. CrossRefPubMed
Musso G, et al. A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med. 2012;44(4):375–93. CrossRefPubMed
Vasilakou D, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. CrossRefPubMed
Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res Clin Pract. 2014;104(3):297–322. CrossRefPubMed
Baker WL, et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–75. CrossRefPubMed
Oelze M, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9(11):e112394. CrossRefPubMedPubMedCentral
Fitchett D, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–34. CrossRefPubMedPubMedCentral
Wu JH, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4(5):411–9. CrossRefPubMed
Roden M, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naive patients with type 2 diabetes: a double-blind extension of a Phase III randomized controlled trial. Cardiovasc Diabetol. 2015;14:154. CrossRefPubMedPubMedCentral
Sonesson C, et al. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol. 2016;15:37. CrossRefPubMedPubMedCentral
Anderson JE, Wright EE, Shaefer CF. Empagliflozin: role in treatment options for patients with type 2 diabetes mellitus. Diabetes Ther. 2016. doi: 10.​1007/​s13300-016-0211-x PubMedPubMedCentral
DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart. 2015;2(1):e000327. CrossRefPubMedPubMedCentral
Van de Laar FA, et al. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;2:CD003639.
Arakawa M, et al. Miglitol suppresses the postprandial increase in interleukin 6 and enhances active glucagon-like peptide 1 secretion in viscerally obese subjects. Metabolism. 2008;57(9):1299–306. CrossRefPubMed
Hariya N, et al. Switching alpha-glucosidase inhibitors to miglitol reduced glucose fluctuations and circulating cardiovascular disease risk factors in type 2 diabetic Japanese patients. Drugs R D. 2014;14(3):177–84. CrossRefPubMedPubMedCentral
Shimabukuro M, et al. Miglitol, alpha-glycosidase inhibitor, reduces visceral fat accumulation and cardiovascular risk factors in subjects with the metabolic syndrome: a randomized comparable study. Int J Cardiol. 2013;167(5):2108–13. CrossRefPubMed
Chiasson J-L, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7. CrossRefPubMed
Chiasson JL, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94. CrossRefPubMed