Skip to main content
Top

08-02-2018 | Cardiovascular outcomes | Article

Regression of albuminuria and its association with incident cardiovascular outcomes and mortality in type 1 diabetes: the FinnDiane Study

Journal: Diabetologia

Authors: Fanny J. Jansson, Carol Forsblom, Valma Harjutsalo, Lena M. Thorn, Johan Wadén, Nina Elonen, Aila J. Ahola, Markku Saraheimo, Per-Henrik Groop, on behalf of the FinnDiane Study Group

Publisher: Springer Berlin Heidelberg

Abstract

Aims/hypothesis

Our aim was to assess regression of albuminuria and its clinical consequences in type 1 diabetes.

Methods

The analysis included 3642 participants from the Finnish Diabetic Nephropathy (FinnDiane) Study with a 24 h urine sample and a history of albuminuria available at baseline. A total of 2729 individuals had normal AER, 438 a history of microalbuminuria and 475 a history of macroalbuminuria. Regression was defined as a change from a higher category of albuminuria pre-baseline to a lower category in two out of the three most recent urine samples at baseline. The impact of regression on cardiovascular events (myocardial infarction, stroke, coronary procedure) and mortality was analysed over a follow-up of 14.0 years (interquartile range 11.9–15.9).

Results

In total, 102 (23.3%) individuals with prior microalbuminuria and 111 (23.4%) with prior macroalbuminuria had regressed at baseline. For individuals with normal AER as a reference, the age-adjusted HRs (95% CI) for cardiovascular events were 1.42 (0.75, 2.68) in individuals with regression from microalbuminuria, 2.62 (1.95, 3.54) in individuals with sustained microalbuminuria, 3.15 (2.02, 4.92) in individuals with regression from macroalbuminuria and 5.49 (4.31, 7.00) in individuals with sustained macroalbuminuria. Furthermore, for all-cause and cardiovascular mortality rates, HRs in regressed individuals were comparable with those with sustained renal status at the achieved level (i.e. those who did not regress but remained at the most advanced level of albuminuria noted pre-baseline).

Conclusions/interpretation

Progression of diabetic nephropathy confers an increased risk for cardiovascular disease and premature death. Notably, regression reduces the risk to the same level as for those who did not progress.
Literature
1.
Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 319:1430–1432CrossRef
2.
Parving HH, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR (1982) Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol 100:550–555PubMed
3.
Mogensen CE, Christensen CK (1984) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311:89–93CrossRefPubMed
4.
Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348:2285–2293CrossRefPubMed
5.
Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A, Koya D (2005) Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 54:2983–2987CrossRefPubMed
6.
Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N (2004) Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 47:1020–1028CrossRefPubMed
7.
Gerstein HC, Mann JF, Yi Q et al (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426CrossRefPubMed
8.
de Zeeuw D, Remuzzi G, Parving HH et al (2004) Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110:921–927CrossRefPubMed
9.
Ljungman S, Wikstrand J, Hartford M, Berglund G (1996) Urinary albumin excretion—a predictor of risk of cardiovascular disease. A prospective 10-year follow-up of middle-aged nondiabetic normal and hypertensive men. Am J Hypertens 9:770–778CrossRefPubMed
10.
Tuomilehto J, Borch-Johnsen K, Molarius A et al (1998) Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia 41:784–790CrossRefPubMed
11.
Deckert T, Yokoyama H, Mathiesen E et al (1996) Cohort study of predictive value of urinary albumin excretion for atherosclerotic vascular disease in patients with insulin dependent diabetes. BMJ 312:871–874CrossRefPubMedPubMedCentral
12.
Borch-Johnsen K, Kreiner S (1987) Proteinuria: value as predictor of cardiovascular mortality in insulin dependent diabetes mellitus. Br Med J (Clin Res Ed) 294:1651–1654CrossRef
13.
Hillege HL, Fidler V, Diercks GF et al (2002) Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–1782CrossRefPubMed
14.
Groop PH, Thomas MC, Moran JL et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658CrossRefPubMedPubMedCentral
15.
Rossing P, Hougaard P, Borch-Johnsen K, Parving HH (1996) Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 313:779–784CrossRefPubMedPubMedCentral
16.
Thorn LM, Forsblom C, Fagerudd J et al (2005) Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28:2019–2024CrossRefPubMed
17.
Levey AS, Stevens LA, Schmid CH et al (2009) CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefPubMedPubMedCentral
18.
Fine J, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509CrossRef
19.
Ibsen H, Olsen MH, Wachtell K et al (2005) Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension 45:198–202CrossRefPubMed
20.
Araki S, Haneda M, Koya D et al (2007) Reduction in microalbuminuria as an integrated indicator for renal and cardiovascular risk reduction in patients with type 2 diabetes. Diabetes 56:1727–1730CrossRefPubMed
21.
de Boer IH, Gao X, Cleary PA et al (2016) Albuminuria changes and cardiovascular and renal outcomes in type 1 diabetes: the DCCT/EDIC study. Clin J Am Soc Nephrol 11:1969–1977CrossRefPubMedPubMedCentral
22.
de Boer IH, Afkarian M, Rue TC et al (2014) Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol 25:2342–2350CrossRefPubMedPubMedCentral
23.
Hovind P, Rossing P, Tarnow L, Toft H, Parving J, Parving HH (2001) Remission of nephrotic-range albuminuria in type 1 diabetic patients. Diabetes Care 24:1972–1977CrossRefPubMed
24.
Herbert LA, Bain RP, Verme D et al (1994) Remission of nephrotic range proteinuria in type I diabetes. Collaborative Study Group. Kidney Int 46:1688–1693CrossRef
25.
Ellis D, Lloyd C, Becker DJ, Forrest KY, Orchard TJ (1996) The changing course of diabetic nephropathy: low-density lipoprotein cholesterol and blood pressure correlate with regression of proteinuria. Am J Kidney Dis 27:809–818CrossRefPubMed
26.
Gaede P, Tarnow L, Vedel P, Parving HH, Pedersen O (2004) Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol Dial Transplant 19:2784–2788CrossRefPubMed
27.
Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH (2001) Remission and regression in the nephropathy of type 1 diabetes when blood pressure is controlled aggressively. Kidney Int 60:277–283CrossRefPubMed
28.
Parving HH, Lehnert H, Bröchner-Mortensen J et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878CrossRefPubMed
29.
O’Hare P, Bilbous R, Mitchell T, O’Callaghan CJ, Viberti GC (2000) Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care 23:1823–1829CrossRefPubMed
30.
Chan JC, Ko GT, Leung DH et al (2000) Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int 57:590–600CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »