Skip to main content
Top

21-12-2017 | Cardiovascular disorders | Article

Hypertensive diabetic patients: incidence of cardiovascular and renal outcomes in a historical cohort over 11 years

Journal: Diabetology & Metabolic Syndrome

Authors: Andréa Cristina Sousa, Thiago Veiga Jardim, Thiago Olivera Costa, Fabrício Galdino Magalhães, Marcos Paulo Marinho Montelo, Weimar K. Barroso Souza, Paulo César Brandão Veiga Jardim, Ana Luiza Lima Sousa

Publisher: BioMed Central

Abstract

Background

Diabetics have increased risks for cardiovascular disease (CVD) and mortality, reducing their life expectancy by up to 15 years. Type 2 diabetes mellitus specifically increases the risk for cardiovascular mortality nearly fivefold. When hypertension is combined with diabetes, the risk of CVD is even greater.

Objective

Identify non-fatal cardiovascular outcomes and renal function impairment in a cohort of hypertensive patients in regular treatment in a reference treatment center, over 11 years of follow-up.

Methods

Historical cohort of hypertensive patients in regular treatment for at least 11 years in a specialized service for hypertension treatment. The exposed group was hypertensive diabetic patients at the beginning of the cohort, and the non-exposed group had hypertension without diabetes. The cohort began in 2004, with follow-ups in 2009 and 2015. Variables used: gender, race, age, physical activity, alcohol consumption, smoking, blood pressure, body mass index, glycated hemoglobin, diabetes and hypertension diagnosis times, treatment time in specialized service, non-fatal cardiovascular outcomes, and renal impairment assessed by creatinine clearance.

Results

139 patients participated in the study (55 diabetic hypertensive; 84 non-diabetic hypertensive), with an initial (2004) mean hypertension treatment time of 5.8 years. Females were the majority (75.5%) in both groups. Groups were similar regarding socio-demographic variables, but the group of hypertensive diabetic patients had higher frequency of obesity and uncontrolled BP, which persisted in all follow-ups. In 11 years of follow-up (2004–2015), the diabetic group had more cardiovascular events, with increased risk of acute myocardial infarction (RR 95% CI 1.6 12.2–95.0), stroke (RR 95% CI 1.3–6.1 27.7) and complications requiring hospitalization (RR 95% CI 1.6 2.2–3.0). Worsened renal function occurred more often in the non-exposed group, but in the end, the proportion of renal function loss was similar between groups.

Conclusions

Exposure to type 2 diabetes increased the risk of new cardiovascular outcomes over 11 years of follow-up of hypertensive patients. Diabetes by itself increased the risk of cardiovascular outcomes, justifying more intensive actions in this population.
Literature
1.
Pechere-Bertschi A, Greminger P, Hess L, Philippe J, Ferrari P. Swiss hypertension and risk factor program (SHARP): cardiovascular risk factors management in patients with type 2 diabetes in Switzerland. Blood Press. 2005;14(6):337–44.CrossRefPubMed
2.
Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.CrossRefPubMed
3.
Mannucci E, Dicembrini I, Lauria A, Pozzilli P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care. 2013;36(Suppl 2):S259–63.CrossRefPubMedPubMedCentral
4.
Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care. 2008;31(4):714–9.CrossRefPubMed
5.
Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci. 2007;112(7):375–84.CrossRefPubMed
6.
Cederholm J, Gudbjornsdottir S, Eliasson B, Zethelius B, Eeg-Olofsson K, Nilsson PM, et al. Blood pressure and risk of cardiovascular diseases in type 2 diabetes: further findings from the Swedish National Diabetes Register (NDR-BP II). J Hypertens. 2012;30(10):2020–30.CrossRefPubMed
7.
Malachias MVB, Souza WKSBD, Plavnik FL, Rodrigues CIS, Brandao AA, Neves MFT, et al. 7ª Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3):1–103.PubMedPubMedCentral
8.
Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC, et al. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol. 2013;101:1–20.CrossRef
9.
Bertoluci MC, Pimazoni-Netto A, Pires AC, Pesaro AE, Schaan BD, Caramelli B, et al. Diabetes and cardiovascular disease: from evidence to clinical practice—position statement 2014 of Brazilian Diabetes Society. Diabetol Metab Syndr. 2014;6:58.CrossRefPubMedPubMedCentral
10.
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization technical report series. 2000;894:i–xii, 1–253.
11.
National KF. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1.
12.
Selvin E, Coresh J, Golden SH, Boland LL, Brancati FL, Steffes MW. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2005;28(8):1965–73.CrossRefPubMed
13.
Balan D, Babes PA. Incidence and type of stroke in patients with diabetes. Comparison between diabetics and nondiabetics. Rom J Intern Med. 2009;47(3):249–55.PubMed
14.
Preis SR, Hwang SJ, Coady S, Pencina MJ, D’Agostino RB Sr, Savage PJ, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119(13):1728–35.CrossRefPubMedPubMedCentral
15.
Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, et al. Type 2 diabetes and incidence of a wide range of cardiovascular diseases: a cohort study in 1.9 million people. Lancet. 2015;385:S86.CrossRef
16.
Iso H, Imano H, Kitamura A, Sato S, Naito Y, Tanigawa T, et al. Type 2 diabetes and risk of non-embolic ischaemic stroke in Japanese men and women. Diabetologia. 2004;47(12):2137–44.CrossRefPubMed
17.
Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRefPubMed
18.
Banerjee C, Moon YP, Paik MC, Rundek T, Mora-McLaughlin C, Vieira JR, et al. Duration of diabetes and risk of ischemic stroke: the Northern Manhattan Study. Stroke. 2012;43(5):1212–7.CrossRefPubMedPubMedCentral
19.
The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.CrossRefPubMedCentral
20.
Sousa AC, Costa TC, Magalhães FG, Montelo MPM, Souza WKSB, Jardim TSV, et al. Blood pressure control in an 11-year cohort of diabetic and non-diabetic individuals with hypertension. J Nutr Health Food Sci. 2017;5(4):1–8.CrossRef
21.
Nichols GA, Joshua-Gotlib S, Parasuraman S. Independent contribution of A1C, systolic blood pressure, and LDL cholesterol control to risk of cardiovascular disease hospitalizations in type 2 diabetes: an observational cohort study. J Gen Intern Med. 2013;28(5):691–7.CrossRefPubMedPubMedCentral
22.
Shah BR, Victor JC, Chiu M, Tu JV, Anand SS, Austin PC, et al. Cardiovascular complications and mortality after diabetes diagnosis for South Asian and Chinese patients: a population-based cohort study. Diabetes Care. 2013;36(9):2670–6.CrossRefPubMedPubMedCentral
23.
Lago RM, Singh PP, Nesto RW. Diabetes and hypertension. Nat Clin Pract Endocrinol Metab. 2007;3(10):667.CrossRefPubMed
24.
Klein R, Klein BE, Lee KE, Cruickshanks KJ, Moss SE. The incidence of hypertension in insulin-dependent diabetes. Arch Intern Med. 1996;156(6):622–7.CrossRefPubMed
25.
Wannamethee SG, Shaper AG, Lennon L, Morris RW. Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med. 2005;165(22):2644–50.CrossRefPubMed
26.
Najarian RM, Sullivan LM, Kannel WB, Wilson PW, D’Agostino RB, Wolf PA. Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: the Framingham Offspring Study. Arch Intern Med. 2006;166(1):106–11.CrossRefPubMed
27.
Stiefel P, García-Morillo JS, Villar J. Características clínicas, bases celulares y moleculares de la hipertensión arterial del anciano. Medicina clínica. 2008;131(10):387–95.CrossRefPubMed
28.
Group TSR. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.CrossRef
29.
Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.CrossRefPubMed
30.
Cushman WC, Evans GW, Cutler JA. Long-term cardiovascular effects of 4.9 years of intensive blood pressure control in type 2 diabetes mellitus: the action to control cardiovascular risk in diabetes follow-on blood-pressure study. American Heart Association 2015 Scientific Sessions. 2015.
31.
Ritz E. Hypertension and kidney disease. Clin Nephrol. 2010;74(Suppl 1):S39–43.PubMed
32.
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.CrossRefPubMed
33.
Peralta CA, Weekley CC, Li Y, Shlipak MG. Occult chronic kidney disease among persons with hypertension in the United States: data from the national health and nutrition surveys 1988–1994 and 1999–2002. J Hypertens. 2013;31(6):1196–202.CrossRefPubMedPubMedCentral
34.
Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012;380(9854):1649–61.CrossRefPubMedPubMedCentral
35.
Cheng LT, Gao YL, Gu Y, Zhang L, Bi SH, Tang W, et al. Stepwise increase in the prevalence of isolated systolic hypertension with the stages of chronic kidney disease. Nephrol Dial Transplant. 2008;23(12):3895–900.CrossRefPubMed
36.
Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81.CrossRef
37.
Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012;380(9844):807–14.CrossRefPubMed
38.
Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662–73.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »