Skip to main content
Top

05-02-2018 | Cardiovascular disorders | Review | Article

Clinical features and therapeutic perspectives on hypertension in diabetics

Journal: Hypertension Research

Authors: Shigehiro Katayama, Masako Hatano, Masashi Issiki

Publisher: Nature Publishing Group UK

Abstract

Over 50% of patients with diabetes mellitus, either type 1 or 2, ultimately develop hypertension as a complication. In diabetics, this further increases the incidence of cardiovascular disease (CVD) by 2- to 3-fold and accelerates the progression of diabetic nephropathy. Arteriosclerosis, a clinical feature of hypertension in diabetics, develops and advances from a young age. Therefore, in providing treatment, it is necessary to evaluate the degree of arteriosclerosis. Diabetic patients are encouraged to strictly control their blood glucose levels. Recently developed drugs, such as GLP-1 receptor agonists, DPP-4 inhibitors and SGLT2 inhibitors, also have hypotensive actions, making them ideal for use in diabetics with hypertension. SGLT2 inhibitors and GLP-1 receptor agonists reportedly suppress the onset and progression of CVD, as well as diabetic nephropathy. The possibility of hypoglycemia triggering blood pressure elevation and arrhythmia has been noted, so a key point here is not to cause hypoglycemia. In selecting hypotensive agents, we must choose types that do not aggravate insulin resistance and engage in hypotensive treatment that also considers both nocturnal and morning hypertension. In addition, facing the onset of an aging society, there is a growing need for treatments that do not cause excessive blood pressure reduction or hypoglycemia. Favorable lifelong blood pressure and glucose control are increasingly important for the treatment of diabetes accompanied by hypertension.
Literature
1.
Tatsumi Y, Ohkubo T. Hypertension with diabetes mellitus: significance from epidemiological perspectives for Japanese. Hypertens Res. 2017;40:795–806.CrossRefPubMed
2.
Nakamura J, Kamiya H, Haneda M, Inagaki N, Tanizawa Y, Araki E, Ueki K, Nakayama T. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001–2010: report from the Committee on the cause of death in diabetes mellitus. J Jpn Diab Soc. 2016;59:667–84. (in Japanese).
3.
Masakane I, Taniguchi M, Nakai S, Tsuchida K, Goto S, Wada A, Ogata S, Hasegawa T, Hamano T, Hanafusa N, Mizuguchi J, Nakamoto H. An overview of regular dialysis treatment in Japan (as of 31 December 2015). Ther Apher Dial. 2017;50:1–62. (in Japanese).
4.
Gregg EW, Yanfeng L, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370:1514–23.CrossRefPubMed
5.
Ali MK, Bullard KM, Saaddine JB, Cowie CC, Imperatore G, Gregg EW. Achievement of goals in U.S. diabetes care, 1999–2010. N Engl J Med. 2013;368:1613–24.CrossRefPubMed
6.
Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.CrossRefPubMed
7.
Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, on behalf of the UKPDS Group. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective. Diabetes Study (UKPDS 64) Kid Intern. 2003;63:225–232.
8.
Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin dependent diabetes mellitus. A systemic overview of the literature. Arch Intern Med. 1997;157:1413–8.CrossRefPubMed
9.
Katayama S, Moriya T, Tanaka S, Tanaka S, Yajima Y, Sone H, Iimuro S, Ohashi Y, Akanuma Y, Yamada N, for the Japan Diabetes Complications Study Group. Low transition rate from normo- and low microalbuminuria to proteinuria in Japanese type 2 diabetic individuals: the Japan Diabetes Complications Study (JDCS). Diabetologia. 2011;54:1025–31.CrossRefPubMedPubMedCentral
10.
Kawasaki R, Tanaka S, Tanaka S, Yamamoto T, Sone H, Ohashi Y, Akanuma Y, Yamada N, Yamashita H. Incidence and progression of diabetic retinopathy in Japanese adults with type 2 diabetes: 8-year follow-up study of the Japan Diabetes Complications Study (JDCS). Diabetologia. 2011;54:2288–94.CrossRefPubMed
11.
Chaturvedi N, Porta M, Klein R, Orchard T, Fuller J, Parving HH, Bilous R, Sjolie AK, DIRECT Programme Study Group. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet. 2008;372:1394–402.CrossRefPubMed
12.
Sjolie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH, Bilous R, Chaturvedi N, DIRECT Programme Study Group. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet. 2008;372:1385–93.CrossRefPubMed
13.
Forrest KY-Z, Maser RE, Pambianco G, Becker DJ, Orchard TJ. Hypertension as a risk factor for diabetic neuropathy. Diabetes. 1997;46:665–70.CrossRefPubMed
14.
Malik RA, Williamson S, Abbott C, Carrington AL, Iqbal J, Schacly W. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomized double-blind controlled study. Lancet. 1998;352:1978–81.CrossRefPubMed
15.
McGill C, McMahon CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Arter Thromb Vasc Biol. 1995;15:431–40.CrossRef
16.
Berenson G, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA, for the Bogalusa Heart Study. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338:1650–6.CrossRefPubMed
17.
Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, Girelli A, Rodella L, Bianchi R, Sleiman I, Rosei EA. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103:1238–44.CrossRefPubMed
18.
Yamashina A, Tomiyama H, Arai T, Hirose K, Koji Y, Hirayama Y, Yamamoto Y, Hori S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens Res. 2003;26:615–22.CrossRefPubMed
19.
Cecelja M, Chowienczyk P. Dissociation of aortic pulse velocity with risk factors for cardiovascular disease other than hypertension. A systemic review. Hypertension. 2009;54:1328–36.CrossRefPubMed
20.
Perticone F, Maio R, Sciacquana A, Andreozzi F, Ilemma G, Perticone M, Zoccali C, Sesti G. Endothelial dysfunction and C‐reactive protein are risk factors for diabetes in essential hypertension. Diabetes. 2008;57:167–71.CrossRefPubMed
21.
Tomiyama H, Tsumoto C, Yamada J, Teramoto T, Abe K, Ohta H, Kiso Y, Kawauchi T, Yamashina A. The relationship of cardiovascular disease risk factors to flow-mediated dilatation in Japanese subjects free of cardiovascular disease. Hypertens Res. 2008;31:2019–25.CrossRefPubMed
22.
Kawamori R, Yamasaki Y, Matsushima H, Nishizawa H, Nao K, Hougaku H, Maeda H, Handa N, Matsumoto M, Kamada T. Prevalence of carotid atherosclerosis in diabetic patients. Ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care. 1992;15:1290–4.CrossRefPubMed
23.
Mitsuhashi N, Onuma T, Kubo S, Takayanagi N, Honda M, Kawamori R, Yamasaki Y, Matsushima H, Nishizawa H, Nao K, Hougaku H, Maeda H, Handa N. Coronary artery disease and carotid artery intima-media thickness in Japanese type 2 diabetic patients. Diabetes Care. 2002;25:1308–12.CrossRefPubMed
24.
Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent-Hansen L, Neilsen MD. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus. Diabetology. 1987;30:610–17.
25.
Ditzel J, Brochner-Mortensen J. Tubular reabsorption rates as related to elevated glomerular filtration in diabetic children. Diabetes. 1983;32:28–33.CrossRefPubMed
26.
Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, Bryer-Ash M. increased plasma inactive renin in diabetes mellitus: a marker of microvascular complications. N Engl J Med. 1985;312:1412–7.CrossRefPubMed
27.
Uzu T, Skaguchi M, Yokomaku Y, Kume S, Kanasaki M, Isshiki K, Araki S, Sugimoto T, Koya D, Haneda M, Kashiwagi A. Effects of high sodium intake and diuretics on circadian rhythm of blood pressure in type 2 diabetic patients treated with an angiotensin II receptor blocker. Clin Exp Nephrol. 2009;13:300–6.CrossRefPubMed
28.
Gans ROB, Bilo HJG, Nauta JJP, Heine RJ, Donker AJM. Acute hyperinsulinemia induces sodium retention and a blood pressure decline in diabetes mellitus. Hypertension. 1992;20:199–209.CrossRefPubMed
29.
Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonist: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res. 2012;9:95–108.CrossRefPubMed
30.
Tanaka T, Nangaku M, Nishiyama A. The role of incretins in salt-sensitive hypertension: the potential use of dipeptidyl peptidase-IV inhibitors. Curr Opin Nephrol Hypertens. 2015;20:476–81.CrossRef
31.
Katayama S. Glycemic control and blood pressure 2 Hypotensive action of SGLT2 inhibitors. J Blood Press. 2016;23:712–6. (in Japanese)
32.
Vasilakou D, Karaglannis T, Athanasiadou E, Malnou M, Liakos A, Bekiari E, Sarigianni M, Mathews DR, Tsapas A. Sodium-glucose cotransporter 2 inhibitor for type 2 diabetes. A systemic review and meta-analysis. Ann Intern Med. 2013;159:262–74.CrossRefPubMed
33.
Tikkanen I, Narka K, Zeller C, Green A, Salsali A, Broedl UC, Woerle H on behalf of the EMPA-REG BP Investigators. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.CrossRefPubMed
34.
Zinman B, Arnner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Biomath D, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, for the EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefPubMed
35.
Rahman A, Hitomi H, Nishiyama A. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure. Hypertens Res. 2016;40:535–40.CrossRef
36.
Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Biomath D, Johansen OE, Woerie HJ, Broedl UC, Zinman B, for the EMPA-REG OUTCOME Investigators. Empaglifozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.CrossRefPubMed
37.
Cherney DZI, Perkins A, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.CrossRefPubMed
38.
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, for the LEADER Steering Committee on behalf of the LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefPubMedPubMedCentral
39.
Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsboll T, for the SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefPubMed
40.
Tsujimoto T, Yamamoto-Honda R, Kajio H, Kishimoto M, Noto H, Hachiya R, Kimura A, Kakei M, Noda M. Vital signs, QT-prolongation, and newly diagnosed cardiovascular disease during severe hypoglycemia in type 1 and type 2 diabetic patients. Diabetes Care. 2014;37:217–25.CrossRefPubMed
41.
Chow E, Bernjak A, Williams S, Fawdry RA, Hilbert S, Freeman J, Sheridan P, Heller S. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63:1738–47.CrossRefPubMed
42.
Goto A, Ara OA, Goto M, Terauchi Y, Noda M. Sever hypoglycemia and cardiovascular disease: systemic review and meta-analysis with bias analysis. Br Med J. 2013;347:f4533 https://​doi.​org/​10.​1136/​bmj.​f4533.CrossRef
43.
Ceriello A, Novials A, Ortega E, La Sala L, Pujadas G, Testa R, Bonfigli AR, Esposito K, Gingliano D. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes. 2012;61:2993–97.CrossRefPubMedPubMedCentral
44.
Ferranninini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandi L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987;317:350–7.CrossRef
45.
Salomaa VV, Strandberg TE, Vanhanen H, Naukkarinen V, Sarna S, Miettinen TA. Glucose tolerance and blood pressure: long-term follow-up in middle aged men. Br Med J. 1991;302:493–6.CrossRef
46.
Kashiwabara H, Inaba M, Maruno Y, Morita T, Awata T, Negishi K, Iitaka M, Katayama S. Insulin levels during fasting and glucose tolerance test and HOMA’s index predict subsequent development of hypertension. J Hypertens. 2000;18:83–88.CrossRefPubMed
47.
Rett K, Wicklmayr M, Dietze GJ. Hypoglycemia in hypertensive diabetic patients treated with sulfonylureas, biguanides, and captopril (Letter). N Engl J Med. 1988;319:1609.PubMed
48.
Pollare T, Lithell H, Berne C. A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism. N Engl J Med. 1989;321:868–73.CrossRefPubMed
49.
Kodama J, Katayama S, Tanaka K, Itabasgi A, Kawazu S, Ishii J. Effect of captopril on glucose concentration. Possible role of augmented postprandial forearm blood flow. Diabetes Care. 1990;13:1109–11.CrossRefPubMed
50.
Eliot WJ, Meyer P. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369:201–07.CrossRef
51.
Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L, Norgiolini S, Bracco C, Porcellati C. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43:963–9.CrossRefPubMed
52.
Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuchi M, Imai Y, Imaizumi T, Ishimitdu T, Ito M, Ito S, Itoh H, Iwao H, Kai H, Kario K, Kashihara N, Kawano Y, Kim-Mitsuyama S, Kimura G, Kohara K, Komuro I, Kumagai H, Matsuura H, Miura K, Morishita R, Maruse M, Node K, Ohya Y, Rakugi H, Saito I, Saitoh S, Shimada K, Shmosawa T, Suzuki H, Tamura K, Tanahashi N, Tsuchihashi T, Uchiyama M, Ueda S, Umemura S, on behalf of The Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension. The Japanese Society of Hypertension guidelines for the management of hypertension 2014. Hypertens Res. 2014;37:253–390.CrossRefPubMed
53.
Ohkubo T, Imai Y, Tsuji I, Nagai K, Kato J, Kikuchi N, Nishiyama A, Aihara A, Sekine M, Kikuya M, Ito S, Satoh H, Hisamichi S. Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. J Hypertens. 1998;16:971–5.CrossRefPubMed
54.
Kamoi K, Kaneko S, Miyakoshi, Nakagawa O, Soda S. Usefulness of home blood pressure measurement in the morning in type 2 diabetic patients. Diabetes Care. 2002;25:2218–23.CrossRefPubMed
55.
Toyama M, Watanabe S, Miyauchi T, Kuroda Y, Ojima E, Sato A, Seo Y, Aonuma K. Diabetes and obesity are significant risk factors for morning hypertension: from Ibaragi Hypertension Assessment trial (I-HAT). Life Sci. 2014;104:32–7.CrossRefPubMed
56.
Noguchi Y, Asayama K, Staessen JA, Inaba M, Ohkubo T, Hosaka M, Satoh M, Kamide K, Awata T, Katayama S, Imai Y, the HOMED-BP study group. Predictive power of home blood pressure and clinic blood pressure in hypertensive patients with impaired glucose metabolism and diabetes. J Hypertens. 2013;31:1593–602.CrossRefPubMed
57.
Kushiro T, Kario K, Saito I, Teramukai S, Sato Y, Okuda Y, Shimada K. Increased cardiovascular risk of treated white coat and masked hypertension in patients with diabetes and chronic kidney disease: the HONEST Study. Hypertens Res. 2017;40:87–95.CrossRefPubMed
58.
Benhamou PY, Halmi S, De Gaudemaris R, Boizel R, Pitiot M, Siche JP, Bachelot I, Mallion JM. Early disturbances of ambulatory blood pressure load in normotensive type 1 diabetic patients with microalbuminuria. Diabetes Care. 1992;15:1614–9.CrossRefPubMed
59.
Gilbert R, Phillips P, Clarke C, Jerums G. Day-night blood pressure variation in normotensive, normoalbuminuric type 1 diabetic subjects. Dippers Non-Dippers Diabetes Care. 1994;17:824–7.CrossRefPubMed
60.
Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347:797–805.CrossRefPubMed
61.
Fogari R, Zoppi A, Malamani GD, Lazzari P, Destro M, Corradi L. Ambulatory blood pressure monitoring in normotensive and hypertensive type 2 diabetics. Preval Impair Diurnal Blood Press Patterns Am J Hypertens. 1993;6:1–7.
62.
Oh SW, Han SY, Han KH, Cha RH, Kim S, Yoon SA, Rhu DR, Oh J, Lee EY, Kim DK, Kim YS, APrODiTe investigators. Morning hypertension and night non-dipping in patients with diabetes and chronic kidney disease. Hypertens Res. 2015;38:889–94.CrossRefPubMed
63.
Spallone V, Gambarella S, Maiello MR, Barini A, Frontoni S, Menzinger G. Relationship between autonomic neuropathy, 24-h blood pressure profile, and nephropathy in normotensive IDDM patients. Diabetes Care. 1994;17:578–84.CrossRefPubMed
64.
Nakano S, Fukuda M, Hotta F, Ito T, Ishii T, Kitazawa M, Nishizawa M, Kigoshi T, Uchida K. Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and nonfatal vascular events in NIDDM subjects. Diabetes. 1998;47:1501–6.CrossRefPubMed
65.
Nakano S, Konishi K, Furuya K, Uehara K, Nishizawa M, Nakagawa A, Kigoshi T, Uchida K. A prognostic role of mean 24-h pulse pressure level for cardiovascular events in type 2 diabetic subjects under 60 years of age. Diabetes Care. 2005;28:102–7.CrossRef
66.
Eguchi K, Pickering TG, Hoshiide S, Ishikawa J, Ishikawa S, Schwartz JE, Shimada K, Kario K. Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am J Hypertens. 2008;21:443–50.CrossRefPubMed
67.
Palmas W, Pickering TG, Teresi J, Schwartz JE, Moran A, Weinstock RS, Shea S. Ambulatory blood pressure monitoring and all-cause mortality in elderly people with diabetes mellitus. Hypertension. 2009;53:12–127.CrossRef
68.
Franklin SS, Thijs L, Li Y, Hansen TW, Boggia J, Liu Y, Asayama K, Björklund-Bodegård K, Ohkubo T, Jeppesen J, Torp-Pederse C, Dolan E, Kuznetsova T, Stolarz-Skrzypek K, Tikhonoff V, Malyutina S, Casiglia E, Nikitin Y, Lind L, Sandoya E, Kawecka-Jaszcz K, Filipovský J, Imai Y, Wang J, Ibsen H, O’Brien E, Staessen JA, on behalf of the International Database on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) Investigators. Masked hypertension in diabetes mellitus. Treatment implications for clinical practice. Hypertension. 2013;61:964–71.CrossRefPubMedPubMedCentral
69.
Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care. 2011;34:1270–6.CrossRefPubMedPubMedCentral
70.
Kamoi K, Ikarashi T. The bedtime administration of doxazosin controls morning hypertension and albuminuria in patients with type-2 diabetes: Evaluation using home-based blood pressure measurements. Clin Exp Hypertens. 2005;4:369–76.CrossRef
71.
Hermida RC, Ayala DE, Smolensky MH, Fernández JR, Mojón A, Portaluppi F. Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks. Hypertens Res. 2016;39:277–92.CrossRefPubMed
72.
Fleg JL, Evans GW, Margolis KL, Barzilay J, Basile JN, Bigger JT, Culter JA, Grimm R, Pedley C, Peterson K, Pop-Busui R, Sperl-Hilelen J, Cushman WC. Orthostatic hypotension in ACCORD (Action to Control Cardiovascular Risk in Diabetes) blood pressure trial. Prevalence, incidence, and prognostic significance. Hypertension. 2016;68:888–95.CrossRefPubMedPubMedCentral
73.
Zoungas S, deGalan BE, Ninomiya T, Grobbee D, Hamet P, Heller S, MacMahon S, Marre M, Neal B, Patel A, Woodward M, Chalmers J, on behalf of the ADVANCE Collaborative Group. Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes. Diabetes Care. 2009;32:2068–74.CrossRefPubMedPubMedCentral
74.
Hata J, Arima H, Rothwell PM, Woodward M, Zoungas S, Anderson C, Patel A, Neal B, Glasziou P, Hamet P, Mancia G, Poulter N, Williams B, Macmahon S, Chalmers J, ADVANCE Collaborative Group. Effects of visit-to-visit variability in systolic blood pressure on macrovascular and microvascular complications in patients with type 2 diabetes mellitus: the ADVANCE trial. Circulation. 2013;128:1325–34.CrossRefPubMed
75.
Bouchi R, Babazono T, Mugishima M, Yoshida N, Nyumura I, Toya K, Hayashi T, Hanai K, Tanaka N, Ishii A, Iwamoto Y. Fluctuations in HbA1c are associated with a higher incidence of cardiovascular disease in Japanese patients with type 2 diabetes. J Diabetes Investig. 2012;3:148–55.CrossRefPubMed
76.
Takao T, Matsuyama Y, Suka M, Yanagisawa H, Iwamoto Y. The combined effect of visit-to-visit variability in HbA1c and systolic blood pressure on the incidence of cardiovascular events in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2015;3:e000129 https://​doi.​org/​10.​1136/​bmjdrc-2015-000129.CrossRefPubMedPubMedCentral
77.
Holman RP, Paul SK, Bethel MA, Mathews DR, Neil AW. 10-Year-follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.CrossRefPubMed
78.
Holman RP, Paul SK, Bethel MA, Neil AW, Mathews DR. Long-term follow up after tight control of blood pressure in type 2 diabetes. N Engl J Med. 2008;359:1565–76.CrossRefPubMed
79.
Zoungas S, Chalmers J, Neal B, Billliot L, Li Q, Hirakawa Y, Arima H, Monaghan H, Joshi R, Colagiuri S, Cooper ME, Glaziou P, Grobbee D, Hamet P, Harrap S, Heller S, Lisheng L, Mancia G, Marre M, Mathews R, Mogensen CE, Perkovic V, Poulter N, Rogers A, Williams B, MacMahon S, Patel A, Woodward M for the ADVANCE Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371:1392–406.CrossRefPubMed
80.
Kashiwagi A, Kazuta K, Takinami Y, Yoshida S, Utsuno A, Nagase I. Ipragliflozin improves glycemic control in Japanese patients with type 2 diabetes mellitus: the BRIGHTEN study. Diabetol Int 2015; 6:8-18.CrossRef
81.
Kaku K, Kiyosue A, Inoue S, Ueda N, Tokudome T, Yang J, Langkilde AM. Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab. 2014;16:1102–10.CrossRefPubMed
82.
Seino Y, Sasaki T, Fukatsu A, Ubukata M, Sakai S, Samukawa Y. Efficacy and safety of luseogliflozin as monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, phase 3 study. Curr Med Res Opin. 2014;30:1245–55.CrossRefPubMed
83.
Kaku K, Watada H, Iwamoto Y, Utsunomiya K, Terauchi Y, Tobe K, Tanizawa Y, Araki E, Ueda M, Suganami H, Watanabe D, Tofogliflozin 003 Study Group. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: a combined Phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:65.CrossRefPubMedPubMedCentral
84.
Rodan M, Weng J, Eilbracht J, Delafont B, Kim G, Woerle HJ, Broedl UC on behalf of the EMPA-REG MONO trial investigators. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013; 1:208–19.CrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »