Skip to main content
Top

24-09-2018 | Atherosclerosis | Article

Prevention of atherothrombotic events in patients with diabetes mellitus: from antithrombotic therapies to new-generation glucose-lowering drugs

Journal: Nature Reviews Cardiology

Authors: Giuseppe Patti, Ilaria Cavallari, Felicita Andreotti, Paolo Calabrò, Plinio Cirillo, Gentian Denas, Mattia Galli, Enrica Golia, Ernesto Maddaloni, Rossella Marcucci, Vito Maurizio Parato, Vittorio Pengo, Domenico Prisco, Elisabetta Ricottini, Giulia Renda, Francesca Santilli, Paola Simeone, Raffaele De Caterina, on behalf of the Working Group on Thrombosis of the Italian Society of Cardiology

Publisher: Nature Publishing Group UK

Abstract

Diabetes mellitus is an important risk factor for a first cardiovascular event and for worse outcomes after a cardiovascular event has occurred. This situation might be caused, at least in part, by the prothrombotic status observed in patients with diabetes. Therefore, contemporary antithrombotic strategies, including more potent agents or drug combinations, might provide greater clinical benefit in patients with diabetes than in those without diabetes. In this Consensus Statement, our Working Group explores the mechanisms of platelet and coagulation activity, the current debate on antiplatelet therapy in primary cardiovascular disease prevention, and the benefit of various antithrombotic approaches in secondary prevention of cardiovascular disease in patients with diabetes. While acknowledging that current data are often derived from underpowered, observational studies or subgroup analyses of larger trials, we propose antithrombotic strategies for patients with diabetes in various cardiovascular settings (primary prevention, stable coronary artery disease, acute coronary syndromes, ischaemic stroke and transient ischaemic attack, peripheral artery disease, atrial fibrillation, and venous thromboembolism). Finally, we summarize the improvements in cardiovascular outcomes observed with the latest glucose-lowering drugs, and on the basis of the available evidence, we expand and integrate current guideline recommendations on antithrombotic strategies in patients with diabetes for both primary and secondary prevention of cardiovascular disease.
Literature
1.
Colwell, J. A., Lopes-Virella, M. & Halushka, P. V. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 4, 121–133 (1981).PubMedCrossRef
2.
American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care 41, S86–S104 (2018).CrossRef
3.
Fox, C. S. et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 38, 1777–1803 (2015).PubMedPubMedCentralCrossRef
4.
Authors/Task Force Members et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur. Heart J. 34, 3035–3087 (2013).CrossRef
5.
Ferreiro, J. L. & Angiolillo, D. J. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation 123, 798–813 (2011).PubMedCrossRef
6.
Blache, D. et al. Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 64, 960–972 (2015).PubMedCrossRef
7.
Sagel, J., Colwell, J. A., Crook, L. & Laimins, M. Increased platelet aggregation in early diabetus mellitus. Ann. Intern. Med. 82, 733–738 (1975).PubMedCrossRef
8.
Ferroni, P., Basili, S., Falco, A. & Davì, G. Platelet activation in type 2 diabetes mellitus. J. Thromb. Haemost. 2, 1282–1291 (2004).PubMedCrossRef
9.
Eibl, N. et al. Improved metabolic control decreases platelet activation markers in patients with type-2 diabetes. Eur. J. Clin. Invest. 34, 205–209 (2004).PubMedCrossRef
10.
Gurbel, P. A., Bliden, K. P., Hiatt, B. L. & O’Connor, C. M. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107, 2908–2913 (2003).PubMedCrossRef
11.
Angiolillo, D. J. et al. High clopidogrel loading dose during coronary stenting: effects on drug response and interindividual variability. Eur. Heart J. 25, 1903–1910 (2004).PubMedCrossRef
12.
Bonello, L. et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J. Am. Coll. Cardiol. 56, 919–933 (2010).PubMedCrossRef
13.
Angiolillo, D. J. et al. Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 50, 1541–1547 (2007).PubMedCrossRef
14.
Angiolillo, D. J. et al. Impact of P2Y(12) inhibitory effects induced by clopidogrel on platelet procoagulant activity in type 2 diabetes mellitus patients. Thromb. Res. 124, 318–322 (2009).PubMedCrossRef
15.
Valenti, R. et al. Prognostic impact of high residual platelet reactivity after chronic total occlusion percutaneous coronary intervention in patients with diabetes mellitus. Int. J. Cardiol. 201, 561–567 (2015).PubMedCrossRef
16.
Marcucci, R. et al. Residual platelet reactivity is associated with clinical and laboratory characteristics in patients with ischemic heart disease undergoing PCI on dual antiplatelet therapy. Atherosclerosis 195, e217–e223 (2007).PubMedCrossRef
17.
Marcucci, R., Grifoni, E. & Giusti, B. On-treatment platelet reactivity: state of the art and perspectives. Vascul. Pharmacol. 77, 8–18 (2016).PubMedCrossRef
18.
Ferreira, I. A., Eybrechts, K. L., Mocking, A. I., Kroner, C. & Akkerman, J.-W. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J. Biol. Chem. 279, 3254–3264 (2004).PubMedCrossRef
19.
Goldstein, S., Simpson, A. & Saenger, P. Hepatic drug metabolism is increased in poorly controlled insulin-dependent diabetes mellitus. Acta Endocrinol. 123, 550–556 (1990).CrossRef
20.
Kudo, T. et al. Altered expression of CYP in TSOD mice: a model of type 2 diabetes and obesity. Xenobiotica 39, 889–902 (2009).CrossRefPubMed
21.
Patoine, D. et al. Modulation of CYP3a expression and activity in mice models of type 1 and type 2 diabetes. Pharmacol. Res. Perspect. 2, e00082 (2014).PubMedPubMedCentralCrossRef
22.
Erlinge, D. et al. Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J. Am. Coll. Cardiol. 52, 1968–1977 (2008).CrossRefPubMed
23.
Watala, C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr. Pharm. Des. 11, 2331–2365 (2005).CrossRefPubMed
24.
DiChiara, J. et al. The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: an analysis from the aspirin-induced platelet effect (ASPECT) study. Diabetes 56, 3014–3019 (2007).CrossRefPubMed
25.
Simpson, S. H., Abdelmoneim, A. S., Omran, D. & Featherstone, T. R. Prevalence of high on-treatment platelet reactivity in diabetic patients treated with aspirin. Am. J. Med. 127, 95 (2014).CrossRefPubMed
26.
Dillinger, J.-G. et al. Biological efficacy of twice daily aspirin in type 2 diabetic patients with coronary artery disease. Am. Heart J. 164, 600–606 (2012).CrossRefPubMed
27.
Rocca, B. et al. The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J. Thromb. Haemost. 10, 1220–1230 (2012).CrossRefPubMed
28.
Vazzana, N., Ranalli, P., Cuccurullo, C. & Davì, G. Diabetes mellitus and thrombosis. Thromb. Res. 129, 371–377 (2012).CrossRefPubMed
29.
Yudkin, J. S. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care 22, C25–C30 (1999).PubMed
30.
Alzahrani, S. H. & Ajjan, R. A. Coagulation and fibrinolysis in diabetes. Diab. Vasc. Dis. Res. 7, 260–273 (2010).PubMedCrossRef
31.
Andreotti, F. et al. Anemia contributes to cardiovascular disease through reductions in nitric oxide. J. Appl. Physiol. 122, 414–417 (2017).PubMedCrossRef
32.
Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).PubMedCrossRef
33.
Bulugahapitiya, U., Siyambalapitiya, S., Sithole, J. & Idris, I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet. Med. 26, 142–148 (2009).PubMedCrossRef
34.
Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010).CrossRef
35.
Pignone, M. et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College. Circulation 121, 2694–2701 (2010).PubMedCrossRef
36.
Antithrombotic Trialists’ Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373, 1849–1860 (2009).CrossRef
37.
Ikeda, Y. et al. Low-dose aspirin for primary prevention of cardiovascular events in Japanese patients 60 years or older with atherosclerotic risk factors: a randomized clinical trial. JAMA 312, 2510–2520 (2014).PubMedCrossRef
38.
Critical Leg Ischaemia Prevention Study Group. Prevention of serious vascular events by aspirin amongst patients with peripheral arterial disease: randomized, double-blind trial. J. Intern. Med. 261, 276–284 (2007).CrossRef
39.
Peto, R. et al. Randomised trial of prophylactic daily aspirin in British male doctors. Br. Med. J. (Clin. Res. Ed). 296, 313–316 (1988).CrossRef
40.
Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the ongoing Physicians’ Health Study. N. Engl. J. Med. 321, 129–135 (1989).CrossRef
41.
Fowkes, F. G. et al. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA 303, 841–848 (2010).PubMedCrossRef
42.
Hansson, L. et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT study group. Lancet 351, 1755–1762 (1998).PubMedCrossRef
43.
Roncaglioni, M. C. & Collaborative Group of the Primary Prevention Project. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention project. Lancet 357, 89–95 (2001).CrossRef
44.
Ridker, P. M. et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N. Engl. J. Med. 352, 1293–1304 (2005).PubMedCrossRef
45.
Kassoff, A. et al. Aspirin effects on mortality and morbidity in patients with diabetes mellitus: early treatment diabetic retinopathy study report 14. JAMA 268, 1292–1300 (1992).CrossRef
46.
Ogawa, H. et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA 300, 2134–2141 (2008).PubMedCrossRef
47.
Belch, J. et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 337, a1840 (2008).PubMedPubMedCentralCrossRef
48.
Saito, Y. et al. Low-dose aspirin for primary prevention of cardiovascular events in patients with type 2 diabetes mellitus: 10-year follow-up of a randomized controlled trial. Circulation 135, 659–670 (2017).PubMedCrossRef
49.
De Berardis, G. et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials. BMJ 339, b4531 (2009).PubMedPubMedCentralCrossRef
50.
Calvin, A. D. et al. Aspirin for the primary prevention of cardiovascular events: a systematic review and meta-analysis comparing patients with and without diabetes. Diabetes Care 32, 2300–2306 (2009).PubMedPubMedCentralCrossRef
51.
Capodanno, D. & Angiolillo, D. J. Aspirin for primary cardiovascular risk prevention and beyond in diabetes mellitus. Circulation 134, 1579–1594 (2016).PubMedCrossRef
52.
Santilli, F., Pignatelli, P., Violi, F. & Davì, G. Aspirin for primary prevention in diabetes mellitus: from the calculation of cardiovascular risk and risk/benefit profile to personalised treatment. Thromb. Haemost. 114, 876–882 (2015).PubMedCrossRef
53.
Bhatt, D. L. et al. Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus. J. Am. Coll. Cardiol. 69, 603–612 (2017).PubMedCrossRef
54.
Gurbel, P. A. et al. Antiplatelet effect durability of a novel, 24-hour, extended-release prescription formulation of acetylsalicylic acid in patients with type 2 diabetes mellitus. Am. J. Cardiol. 118, 1941–1947 (2016).PubMedCrossRef
55.
Bethel, M. A. et al. Randomized controlled trial comparing impact on platelet reactivity of twice-daily with once-daily aspirin in people with type 2 diabetes. Diabet. Med. 33, 224–230 (2016).PubMedCrossRef
56.
Capodanno, D. et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ. Cardiovasc. Interv. 4, 180–187 (2011).PubMedCrossRef
57.
US National Library of Medicine. ClinicalTrials.gov https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT02520921 (2017).
58.
De Berardis, G. et al. Association of aspirin use with major bleeding in patients with and without diabetes. JAMA 307, 2286–2294 (2012).PubMedCrossRef
59.
Piepoli, M. F. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 37, 2315–2381 (2016).PubMedPubMedCentralCrossRef
60.
Rothwell, P. M. et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379, 1602–1612 (2012).PubMedCrossRef
61.
Johnson, J. A. et al. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 55, 1607–1618 (2012).PubMedCrossRef
62.
ASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. https://​doi.​org/​10.​1056/​NEJMoa1804988 (2018).
63.
De Berardis, G. et al. Aspirin and simvastatin combination for cardiovascular events prevention trial in diabetes (ACCEPT-D): design of a randomized study of the efficacy of low-dose aspirin in the prevention of cardiovascular events in subjects with diabetes mellitus treated with statins. Trials 8, 21 (2007).PubMedPubMedCentralCrossRef
64.
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy — 1. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 308, 81–106 (1994).CrossRef
65.
CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348, 1329–1339 (1996).CrossRef
66.
Bhatt, D. L. et al. Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus. Am. J. Cardiol. 90, 625–628 (2002).PubMedCrossRef
67.
Bhatt, D. L. et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J. Am. Coll. Cardiol. 49, 1982–1988 (2007).PubMedCrossRef
68.
Dasgupta, A. et al. Clinical outcomes of patients with diabetic nephropathy randomized to clopidogrel plus aspirin versus aspirin alone (a post hoc analysis of the clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance [CHARISMA] trial). Am. J. Cardiol. 103, 1359–1363 (2009).PubMedCrossRef
69.
Steinhubl, S. R. et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288, 2411–2420 (2002).PubMedCrossRef
70.
Patti, G. et al. Randomized trial of high loading dose of clopidogrel for reduction of periprocedural myocardial infarction in patients undergoing coronary intervention: results from the ARMYDA-2 (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty) study. Circulation 111, 2099–2106 (2005).PubMedCrossRef
71.
Taubert, D. et al. Pharmacokinetics of clopidogrel after administration of a high loading dose. Thromb. Haemost. 92, 311–316 (2004).PubMedCrossRef
72.
Gargiulo, G. et al. Short term versus long term dual antiplatelet therapy after implantation of drug eluting stent in patients with or without diabetes: systematic review and meta-analysis of individual participant data from randomised trials. BMJ 355, i5483 (2016).PubMedPubMedCentralCrossRef
73.
Connolly, S. J. et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 205–218 (2018).CrossRefPubMed
74.
Eikelboom, J. W. et al. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105, 1650–1655 (2002).PubMedCrossRef
75.
CURRENT-OASIS 7 Investigators. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N. Engl. J. Med. 363, 930–942 (2010).CrossRef
76.
Yusuf, S. et al. effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2001).PubMedCrossRef
77.
Angiolillo, D. J. et al. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes 54, 2430–2435 (2005).PubMedCrossRef
78.
Mangiacapra, F. et al. Comparison of platelet reactivity and periprocedural outcomes in patients with versus without diabetes mellitus and treated with clopidogrel and percutaneous coronary intervention. Am. J. Cardiol. 106, 619–623 (2010).PubMedCrossRef
79.
Patti, G., Proscia, C. & Di Sciascio, G. Antiplatelet therapy in patients with diabetes mellitus and acute coronary syndrome. Circ. J. 78, 33–41 (2014).PubMedCrossRef
80.
Ueno, M. et al. Functional profile of the platelet P2Y12 receptor signalling pathway in patients with type 2 diabetes mellitus and coronary artery disease. Thromb. Haemost. 105, 730–732 (2011).PubMedCrossRef
81.
Angiolillo, D. J. et al. Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease. J. Am. Coll. Cardiol. 64, 1005–1014 (2014).PubMedCrossRef
82.
Angiolillo, D. J. et al. A pharmacodynamic comparison of prasugrel versus high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 Trial. Eur. Heart J. 32, 838–846 (2011).PubMedPubMedCentralCrossRef
83.
Laine, M. et al. Ticagrelor versus prasugrel in diabetic patients with an acute coronary syndrome. A pharmacodynamic randomised study. Thromb. Haemost. 111, 273–278 (2014).PubMedCrossRef
84.
Wiviott, S. D. et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel–thrombolysis in myocardial infarction 38. Circulation 118, 1626–1636 (2008).PubMedCrossRef
85.
Roe, M. T. et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N. Engl. J. Med. 367, 1297–1309 (2012).PubMedCrossRef
86.
Dalby, A. J. et al. Dual antiplatelet therapy in patients with diabetes and acute coronary syndromes managed without revascularization. Am. Heart J. 188, 156–166 (2017).PubMedCrossRef
87.
James, S. et al. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur. Heart J. 31, 3006–3016 (2010).PubMedPubMedCentralCrossRef
88.
Franchi, F. et al. Pharmacodynamic comparison of prasugrel versus ticagrelor in patients with type 2 diabetes mellitus and coronary artery disease: the OPTIMUS (Optimizing Antiplatelet Therapy in Diabetes Mellitus)-4 study. Circulation 134, 780–792 (2016).PubMedCrossRef
89.
US National Library of Medicine. ClinicalTrials.gov https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT01944800 (2017).
90.
Schulz, S. et al. Randomized comparison of ticagrelor versus prasugrel in patients with acute coronary syndrome and planned invasive strategy — design and rationale of the iNtracoronary Stenting and Antithrombotic Regimen: Rapid Early Action for Coronary Treatment (ISAR-REACT) 5 trial. J. Cardiovasc. Transl Res. 7, 91–100 (2014).CrossRefPubMed
91.
Mauri, L. et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N. Engl. J. Med. 371, 2155–2166 (2014).PubMedPubMedCentralCrossRef
92.
Meredith, I. T. et al. Diabetes mellitus and prevention of late myocardial infarction after coronary stenting in the randomized dual antiplatelet therapy study. Circulation 133, 1772–1782 (2016).PubMedCrossRef
93.
Bhatt, D. L. et al. Reduction in ischemic events with ticagrelor in diabetic patients with prior myocardial infarction in PEGASUS-TIMI 54. J. Am. Coll. Cardiol. 67, 2732–2740 (2016).PubMedCrossRef
94.
US National Library of Medicine. ClinicalTrials.gov https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT01991795 (2018).
95.
Goto, S. Cilostazol: potential mechanism of action for antithrombotic effects accompanied by a low rate of bleeding. Atheroscler. Suppl. 6, 3–11 (2005).PubMedCrossRef
96.
Angiolillo, D. J. et al. A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. Eur. Heart J. 29, 2202–2211 (2008).PubMedCrossRef
97.
Capranzano, P. et al. Pharmacodynamic effects of adjunctive cilostazol therapy in patients with coronary artery disease on dual antiplatelet therapy: impact of high on-treatment platelet reactivity and diabetes mellitus status. Catheter. Cardiovasc. Interv. 81, 42–49 (2013).PubMedCrossRef
98.
Lee, S.-W. et al. Triple versus dual antiplatelet therapy after coronary stenting: impact on stent thrombosis. J. Am. Coll. Cardiol. 46, 1833–1837 (2005).PubMedCrossRef
99.
Biondi-Zoccai, G. G. et al. Systematic review and meta-analysis of randomized clinical trials appraising the impact of cilostazol after percutaneous coronary intervention. Am. Heart J. 155, 1081–1089 (2008).PubMedCrossRef
100.
Lee, S.-W. et al. Drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with diabetes mellitus the DECLARE-DIABETES Trial (a randomized comparison of triple antiplatelet therapy with dual antiplatelet therapy after drug-eluting stent implantation in diabetic patients). J. Am. Coll. Cardiol. 51, 1181–1187 (2008).CrossRefPubMed
101.
Ahn, Y. et al. Randomized comparison of cilostazol versus clopidogrel after drug-eluting stenting in diabetic patients — clilostazol for diabetic patients in drug-eluting stent (CIDES) trial. Circ. J. 72, 35–39 (2008).CrossRefPubMed
102.
Chen, K.-Y. et al. Triple versus dual antiplatelet therapy in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circulation 119, 3207–3214 (2009).CrossRefPubMed
103.
Han, Y. et al. Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am. Heart J. 157, 733–739 (2009).CrossRefPubMed
104.
Davì, G. et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N. Engl. J. Med. 322, 1769–1774 (1990).CrossRefPubMed
105.
Rollini, F. et al. Pharmacodynamic effects of EV-077 in patients with diabetes mellitus and coronary artery disease on aspirin or clopidogrel monotherapy: results of an in vitro pilot investigation. J. Thromb. Thrombolysis 37, 131–138 (2014).CrossRefPubMed
106.
The RAPT Investigators. Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. The Ridogrel Versus Aspirin Patency Trial (RAPT). Circulation 89, 588–595 (1994).CrossRef
107.
Undas, A., Wiek, I., Stêpien, E., Zmudka, K. & Tracz, W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31, 1590–1595 (2008).PubMedPubMedCentralCrossRef
108.
Mega, J. L. et al. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 366, 9–19 (2012).CrossRefPubMed
109.
Cavender, M. A. et al. Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial. Circulation 131, 1047–1053 (2015).PubMedPubMedCentralCrossRef
110.
Jørgensen, H., Nakayama, H., Raaschou, H. O. & Olsen, T. S. Stroke in patients with diabetes. The Copenhagen Stroke Study. Stroke 25, 1977–1984 (1994).PubMedCrossRef
111.
Capodanno, D., Alberts, M. & Angiolillo, D. J. Antithrombotic therapy for secondary prevention of atherothrombotic events in cerebrovascular disease. Nat. Rev. Cardiol. 13, 609–622 (2016).PubMedCrossRef
112.
Diener, H. C. et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J. Neurol. Sci. 143, 1–13 (1996).PubMedCrossRef
113.
ESPRIT Study Group. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet 367, 1665–1673 (2006).CrossRef
114.
Sacco, R. L. et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N. Engl. J. Med. 359, 1238–1251 (2008).PubMedPubMedCentralCrossRef
115.
Hankey, G. J. et al. Effect of clopidogrel plus ASA versus ASA early after TIA and ischaemic stroke: a substudy of the CHARISMA trial. Int. J. Stroke 6, 3–9 (2011).PubMedCrossRef
116.
Diener, H.-C. et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet 364, 331–337 (2004).PubMedCrossRef
117.
Wang, Y. et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 369, 11–19 (2013).PubMedCrossRef
118.
Johnston, S. C. et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N. Engl. J. Med. 379, 215–225 (2018).PubMedPubMedCentralCrossRef
119.
Bousser, M.-G. et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet 377, 2013–2022 (2011).PubMedCrossRef
120.
Johnston, S. C. et al. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N. Engl. J. Med. 375, 35–43 (2016).PubMedCrossRef
121.
Marso, S. P. & Hiatt, W. R. Peripheral arterial disease in patients with diabetes. J. Am. Coll. Cardiol. 47, 921–929 (2006).PubMedCrossRef
122.
Jude, E. B., Oyibo, S. O., Chalmers, N. & Boulton, A. J. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 24, 1433–1437 (2001).PubMedCrossRef
123.
Feldman, D. N. & Moussa, I. D. Efficacy of aspirin for secondary prevention in patients with peripheral artery disease. Expert Rev. Cardiovasc. Ther. 7, 1203–1207 (2009).PubMedCrossRef
124.
Colwell, J. A. et al. V. A. cooperative study of antiplatelet agents in diabetic patients after amputation for gangrene: unobserved, sudden, and unexpected deaths. J. Diabet. Compl. 3, 191–197 (1989).
125.
Neri Serneri, G. G., Coccheri, S., Marubini, E. & Violi, F., Drug Evaluation in Atherosclerotic Vascular Disease in Diabetics (DAVID) Study Group. Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortality in diabetics with peripheral arterial disease: the DAVID study. Eur. Heart J. 25, 1845–1852 (2004).PubMedCrossRef
126.
Cacoub, P. P. et al. Patients with peripheral arterial disease in the CHARISMA trial. Eur. Heart J. 30, 192–201 (2009).PubMedCrossRef
127.
Huynh, K. Antiplatelet therapy: ticagrelor reduces cardiac events in patients with PAD or diabetes. Nat. Rev. Cardiol. 13, 310–311 (2016).PubMedCrossRef
128.
Bonaca, M. P. et al. Ticagrelor for prevention of ischemic events after myocardial infarction in patients with peripheral artery disease. J. Am. Coll. Cardiol. 67, 2719–2728 (2016).PubMedCrossRef
129.
Hiatt, W. R. et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N. Engl. J. Med. 376, 32–40 (2017).PubMedCrossRef
130.
Bonaca, M. P. et al. Vorapaxar in patients with peripheral artery disease: results from TRA2°P-TIMI 50. Circulation 127, 1522–1529 (2013).PubMedCrossRef
131.
Bonaca, M. P. et al. Acute limb ischemia and outcomes with vorapaxar in patients with peripheral artery disease: results from the trial to assess the effects of vorapaxar in preventing heart attack and stroke in patients with atherosclerosis–thrombolysis in myocardial infarction 50 (TRA2°P-TIMI 50). Circulation 133, 997–1005 (2016).PubMedCrossRef
132.
Gerhard-Herman, M. D. et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135, e726–e779 (2017).PubMed
133.
European Stroke Organisation. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 32, 2851–2906 (2011).CrossRef
134.
Anand, S. S. et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 219–229 (2018).PubMedCrossRef
135.
US National Library of Medicine. ClinicalTrials.gov https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT02504216 (2018).
136.
Capell, W. H. et al. Rationale and design for the Vascular Outcomes study of ASA along with rivaroxaban in endovascular or surgical limb revascularization for peripheral artery disease (VOYAGER PAD). Am. Heart J. 199, 83–91 (2018).PubMedCrossRef
137.
Huxley, R. R., Filion, K. B., Konety, S. & Alonso, A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol. 108, 56–62 (2011).PubMedPubMedCentralCrossRef
138.
Fatemi, O. et al. Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study). Am. J. Cardiol. 114, 1217–1222 (2014).PubMedPubMedCentralCrossRef
139.
Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).PubMedCrossRef
140.
Stroke Risk in Atrial Fibrillation Working Group. Independent predictors of stroke in patients with atrial fibrillation: a systematic review. Neurology 69, 546–554 (2007).CrossRef
141.
Ashburner, J. M. et al. Effect of diabetes and glycemic control on ischemic stroke risk in AF patients: ATRIA study. J. Am. Coll. Cardiol. 67, 239–247 (2016).PubMedPubMedCentralCrossRef
142.
Patti, G. et al. Insulin-requiring versus noninsulin-requiring diabetes and thromboembolic risk in patients with atrial fibrillation: PREFER in AF. J. Am. Coll. Cardiol. 69, 409–419 (2017).PubMedCrossRef
143.
Hart, R. G., Pearce, L. A. & Aguilar, M. I. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 146, 857–867 (2007).PubMedCrossRef
144.
Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).PubMedCrossRef
145.
Itzhaki Ben Zadok, O. & Eisen, A. Use of non-vitamin K oral anticoagulants in people with atrial fibrillation and diabetes mellitus. Diabet. Med. 35, 548–556 (2018).PubMedCrossRef
146.
Patti, G., Di Gioia, G., Cavallari, I. & Nenna, A. Safety and efficacy of nonvitamin K antagonist oral anticoagulants versus warfarin in diabetic patients with atrial fibrillation: a study-level meta-analysis of phase III randomized trials. Diabetes. Metab. Res. Rev. 33, e2876 (2017).CrossRef
147.
Petrauskiene, V., Falk, M., Waernbaum, I., Norberg, M. & Eriksson, J. W. The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia 48, 1017–1021 (2005).PubMedCrossRef
148.
Movahed, M.-R., Hashemzadeh, M. & Jamal, M. M. The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest 128, 3568–3571 (2005).PubMedCrossRef
149.
Piazza, G. et al. Venous thromboembolism in patients with diabetes mellitus. Am. J. Med. 125, 709–716 (2012).PubMedPubMedCentralCrossRef
150.
Heit, J. A. et al. Is diabetes mellitus an independent risk factor for venous thromboembolism? A population-based case-control study. Arterioscler. Thromb. Vasc. Biol. 29, 1399–1405 (2009).PubMedPubMedCentralCrossRef
151.
Konstantinides, S. V. et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 35, 3145–3151 (2014).PubMedCrossRef
152.
Castellucci, L. A. et al. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis. BMJ 347, f5133 (2013).PubMedPubMedCentralCrossRef
153.
Blann, A. D. & Lip, G. Y. H. Non-vitamin K antagonist oral anticoagulants (NOACs) for the management of venous thromboembolism. Heart 102, 975–983 (2016).PubMedCrossRef
154.
Di Minno, A. et al. Old and new oral anticoagulants: food, herbal medicines and drug interactions. Blood Rev. 31, 193–203 (2017).PubMedCrossRef
155.
Cohen, A. T. et al. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. Lancet 371, 387–394 (2008).PubMedCrossRef
156.
De Caterina, R. et al. The direct effects of metformin on platelet function in vitro. Eur. J. Clin. Pharmacol. 37, 211–213 (1989).PubMedCrossRef
157.
Formoso, G. et al. Decreased in vivo oxidative stress and decreased platelet activation following metformin treatment in newly diagnosed type 2 diabetic subjects. Diabetes Metab. Res. Rev. 24, 231–237 (2008).PubMedCrossRef
158.
Xin, G. et al. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release. Sci. Rep. 6, 36222 (2016).PubMedPubMedCentralCrossRef
159.
Randriamboavonjy, V. et al. Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity. Thromb. Haemost. 114, 569–578 (2015).PubMedCrossRef
160.
Khanolkar, M. P. et al. Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus — an effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis 197, 718–724 (2008).PubMedCrossRef
161.
Schöndorf, T. et al. The fixed combination of pioglitazone and metformin improves biomarkers of platelet function and chronic inflammation in type 2 diabetes patients: results from the PIOfix study. J. Diabetes Sci. Technol. 5, 426–432 (2011).PubMedPubMedCentralCrossRef
162.
Sidhu, J. S., Cowan, D., Tooze, J. A. & Kaski, J.-C. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am. Heart J. 147, e25 (2004).PubMedCrossRef
163.
Li, D. et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc. Res. 65, 907–912 (2005).PubMedCrossRef
164.
Maddaloni, E. & Pozzilli, P. SMART diabetes: the way to go (Safe and Multifactorial Approach to reduce the Risk for Therapy in diabetes). Endocrine 46, 3–5 (2014).PubMedCrossRef
165.
White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013).PubMedCrossRef
166.
Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).PubMedCrossRef
167.
Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015).PubMedCrossRef
168.
Zannad, F. et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385, 2067–2076 (2015).PubMedCrossRef
169.
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).PubMedCrossRef
170.
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).PubMedCrossRef
171.
Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).PubMedPubMedCentralCrossRef
172.
Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).PubMedCrossRef
173.
Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).PubMedCrossRef
174.
Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).PubMedCrossRef
175.
Cameron-Vendrig, A. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65, 1714–1723 (2016).PubMedCrossRef
176.
Barale, C. et al. Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb. Haemost. 117, 1115–1128 (2017).PubMedPubMedCentralCrossRef
177.
Valgimigli, M. et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 4, 213–260 (2018).CrossRef
178.
Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 68, 1082–1115 (2016).PubMedCrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »