Skip to main content
Top

11-18-2017 | Diet | Book chapter | Article

11. Fiber in Type 2 Diabetes Prevention and Management

Author: Mark L. Dreher

Publisher: Springer International Publishing

Abstract

The prevalence of prediabetes and diabetes has increased globally in parallel with the rising levels of obesity in adults and children, a phenomenon sometimes called diabesity. If this global trend continues, by 2030 an estimated one billion people are expected to have prediabetes and diabetes.
As much as 90% of diabetes risk management is attributed to modifiable risk factors such as diet and physical activity and their effect on increased risk of overweight and obesity.
Prospective cohort studies consistently show that increased intake of total fiber and cereal fiber and lower glycemic index and glycemic load diets is effective in reducing diabetes risk.
Meta-analyses of randomized controlled trials (RCTs) including people with prediabetes and diabetes consistently show that increased fiber intake from diets and supplements significantly lowers fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) levels compared to control diets.
Whole oat products such as oatmeal and psyllium, a gel-forming, low fermentable fiber supplement, have been shown clinically to be among the most effective fiber sources in lowering FBG and HbA1c in diabetic and prediabetic individuals compared to placebo.
The primary mechanisms related to adequate fiber intake and diabetes prevention and management are (1) reducing the risk of obesity and visceral fat accumulation, (2) promoting and maintaining a healthy microbiota ecosystem, (3) attenuating elevated systemic inflammation, and (4) controlling postprandial and fasting glycemic responses and protecting against insulin resistance.
Literature
1.
Murray MT. Diabetes mellitus. In: Pizzorno JE, Murray MT, editors. Textbook of natural medicine. 4th ed. Philadelphia: Elsevier; 2013.; Chapter 161. p. 1320–48.CrossRef
2.
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diab Res Clin Prac. 2014;103:137–49.CrossRef
3.
Bullard KM, Saydah SH, Imperatore G, et al. Secular changes in U.S. prediabetes prevalence defined by hemoglobin A1c and fasting plasma glucose: National Health and Nutrition Examination Surveys, 1999–2010. Diabetes Care. 2013;36(8):2286–93.PubMedPubMedCentralCrossRef
4.
Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.PubMedPubMedCentralCrossRef
5.
Ley SH, Hamdy O, Mahan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.PubMedPubMedCentralCrossRef
6.
FB H, Manson E, Stampfer MJ. Diet, lifestyle and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.CrossRef
7.
Jecht M. Overall mortality risk in patients with type 2 diabetes. Diabetologe. 2012;8:490–1.CrossRef
8.
Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality – The San Antonio Heart Study. Diabetes Care. 1998;21:1167–72.PubMedCrossRef
9.
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.PubMedCrossRef
10.
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:377–82.
11.
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.PubMedCrossRef
12.
Pan XR, Li GW, Wang JX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance – The Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537–44.PubMedCrossRef
13.
Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.PubMedCrossRef
14.
Alhazmi A, Stojanovski E, McEvoy M, Garg ML. The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Hum Nutr Diet. 2014;27:251–60.PubMedCrossRef
15.
Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Suppl 1):S120–43.PubMedCrossRef
16.
Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. Gastroenterol Hepatol. 2016;31(5):936–44.CrossRef
17.
Dahl WJ, Steward ML. Position of the academy of nutrition and dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861–70.PubMedCrossRef
18.
Feldman AL, Long GH, Johansson I, et al. Change in lifestyle behavior and diabetes risk: evidence from a population-based cohort study with 10 year follow-up. Int J Behav Nutr Phys Act. 2017;14:39. https://​doi.​org/​10.​1186/​s12966-017-0489-8.PubMedPubMedCentralCrossRef
19.
Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73.PubMedCrossRef
20.
Trowell H. Diabetes mellitus and dietary fiber of starchy foods. Am J Clin Nutr. 1978;10:S53–7.
21.
Burkitt DP. Some diseases characteristic of modern western civilizations. Br Med J. 1973;1:274–8.PubMedPubMedCentralCrossRef
22.
Salas-Salvado J, Martinez-Gonzalez MA, Bullo M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc Dis. 2011;21:32–48.CrossRef
23.
Kuijsten A, Aune D, Schulze MB, et al. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015;58:1394–408.CrossRef
24.
Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88.PubMedCrossRef
25.
Bhupathiraju SN, Tobias DK, Malik VS, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100:218–32.PubMedPubMedCentralCrossRef
26.
AlEssa HB, Ley SH, Rosner B, et al. High fiber and low starch intakes are associated with circulating intermediate biomarkers of type 2 diabetes among women. J Nutr. 2016;146:306–17.PubMedPubMedCentralCrossRef
27.
Pastorino S, Richards M, Pierce M, Ambrosini GL. A high-fat, high-glycaemic index, low-fibre dietary pattern is prospectively associated with type 2 diabetes in a British birth cohort. Br J Nutr. 2016;115(9):1632–42.PubMedPubMedCentralCrossRef
28.
Qiao Y, Tinker L, Olendzki BC, et al. Racial/ethnic disparities in association between dietary quality and incident diabetes in postmenopausal women in the United States: the Women’s Health Initiative 1993–2005. Ethn Health. 2014;19:328–47.PubMedCrossRef
29.
Hopping BN, Erber E, Grandinetti A, et al. Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr. 2010;140:68–74.PubMedPubMedCentralCrossRef
30.
Schulze MB, Liu S, Rimm EB, et al. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. 2004;80:348–56.PubMed
31.
Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167:956–65.PubMedCrossRef
32.
Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20:545–50.PubMedCrossRef
33.
Whincup PH, Donin AS. Cereal fibre and type 2 diabetes: time now for randomised controlled trials? Diabetologia. 2015;58:1383–5.PubMedCrossRef
34.
Gibb RD, Johnson W, McRorie JW, et al. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am J Clin Nutr. 2015;102:1604–14.PubMedCrossRef
35.
Silva FM, Kramer CK, de Almeida JC, et al. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev. 2013;71(12):790–801.PubMedCrossRef
36.
Post RE, Mainous AG, King DE, Simpson KN. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med. 2012;25:16–23.PubMedCrossRef
37.
Wolfram T, Ismail-Beigi F. Efficacy of high-fiber diets in the management of type 2 diabetes mellitus. Endocr Pract. 2011;17:132–42.PubMedCrossRef
38.
Weinhold KR, Miller CK, Marrero DG, et al. A randomized controlled trial translating the diabetes prevention program to a university worksite, Ohio, 2012–2014. Prev Chronic Dis. 2015;12:E210. doi:10.​5888/​pcd12.​150301.PubMedPubMedCentralCrossRef
39.
Weickert MO, Roden M, Isken F, et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr. 2011;94:459–71.PubMedCrossRef
40.
Cicero A, Derosa G, Bove M, et al. Psyllium improves dyslipidemaemia, hyperglycaemia and hypertension, while guar gum reduces body weight more rapidly in patients affected by metabolic syndrome following an AHA Step 2 diet. Med J Nutr Metab. 2010;3:47–54.CrossRef
41.
Kim H, Stote KS, Behall KM, et al. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: a dose response study in obese women with increased risk for insulin resistance. Eur J Nutr. 2009;48:170–5.PubMedCrossRef
42.
Weickert MO, Möhlig M, Schöfl C, et al. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care. 2006;29:775–80.PubMedCrossRef
43.
Nowotny B, Zahiragic L, Bierwagen A, et al. Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial. Diabetologia. 2015;58:255–64.PubMedCrossRef
44.
Cugnet-Anceau C, Nazare JA, Biorklund M, et al. A controlled study of consumption of beta-glucan-enriched soups for 2 months by type 2 diabetic free-living subjects. Br J Nutr. 2010;103:422–8.PubMedCrossRef
45.
Jenkins DJ, Kendall CW, McKeown-Eyssen G, et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA. 2008;300:2742–53.PubMedCrossRef
46.
Jenkins DJ, Kendall CW, Augustin LS, et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care. 2002;25:1522–8.PubMedCrossRef
47.
Chandalia M, Garg A, Lutjohann D, von Bergmann K, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8.PubMedCrossRef
48.
Ley SH, Ardisson Korat AV, Sun Q, et al. Contribution of the Nurses’ Health Studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics. Am J Public Health. 2016;106(9):e1–7. doi:10.​2105/​AJPH.​2016.​303314.​ CrossRef
49.
Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007;29:115–28.PubMedCrossRef
50.
Hu FB. Metabolic consequences of obesity. Obesity epidemiology. New York: Oxford University Press; 2008. p. 149–73.CrossRef
51.
Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–94.PubMedPubMedCentralCrossRef
52.
Sattar N, Gill JMR. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014;12:123.PubMedPubMedCentralCrossRef
53.
Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371(12):1131–41.PubMedCrossRef
54.
Hardy OT, Michael P, Czecha MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81–7.PubMedPubMedCentralCrossRef
55.
Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr. 2012;3:697–707.PubMedPubMedCentralCrossRef
56.
Food and Agriculture Organization of the United Nations. Food energy-methods of analysis and conversion factors. FAO Food and Nutrition Paper. 2003;77: 59.
57.
Livesey G. Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr. 1990;51(4):617–37.PubMed
58.
Oku T, Nakamura S. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans. J Nutr Sci Vitaminol. 2014;60:246–54.PubMedCrossRef
59.
Miles CW. The metabolizable energy of diets differing in dietary fat and fiber measured in humans. J Nutr. 1992;122:306–11.PubMed
60.
Miles CW, Kelsay JL, Wong NP. Effect of dietary fiber on the metabolizable energy of human diets. J Nutr. 1988;118:1079–81.
61.
Baer DJ, Rumpler WV, Miles CW, Fahey GC Jr. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr. 1997;127:579–86.PubMed
62.
Pereira MA, Ludwig DS. Dietary fiber and body weight regulation. Observations and mechanism. Pediatr Clin North Am. 2001;48(4):969–80.PubMedCrossRef
63.
Martinez-Rodriguez R, Gil A. Nutrient-mediated modulation of incretin gene expression: a systematic review. Nutr Hosp. 2012;27:46–53.PubMed
64.
Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes (Lond). 2013;37:625–33.CrossRef
65.
Sanchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30.PubMedCrossRef
66.
Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32(3):200–11.PubMedCrossRef
67.
Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111:1147–61.PubMedCrossRef
68.
Vitaglione P, Lumaga RB, Stanzione A, et al. β-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite. 2009;53:338–44.PubMedCrossRef
69.
Holt SH, Miller JB. Particle size, satiety and the glycaemic response. Eur J Clin Nutr. 1994;48:496–502.PubMed
70.
Bodinham CL, Hitchen KL, Youngman PJ, et al. Short-term effects of whole-grain wheat on appetite and food intake in healthy adults: a pilot study. Br J Nutr. 2011;106:327–30.PubMedCrossRef
71.
Rebello CJ, Chu Y-F, Johnson WD, et al. The role of meal viscosity and oat β-glucan characteristics in human appetite control: a randomized crossover trial. Nutr J. 2014;13:49. doi:10.​1186/​1475-2891-13-49.PubMedPubMedCentralCrossRef
72.
de Oliveira MC, Sichieri R, Mozzer VR. A low energy dense diet adding fruit reduces weight and energy intake in women. Appetite. 2008;51(2):291–5.PubMedCrossRef
73.
Forsberg T, Åman P, Landberg R. Effects of whole grain rye crisp bread for breakfast on appetite and energy intake in a subsequent meal: two randomised controlled trials with different amounts of test foods and breakfast energy content. Nutr J. 2014;13:26. doi:10.​1186/​1475-2891-13-26.PubMedPubMedCentralCrossRef
74.
Flood-Obbagy JE, Rolls BJ. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009;52(2):416–22.PubMedCrossRef
75.
Moorhead SA, Welch RW, Barbara M, et al. The effects of the fibre content and physical structure of carrots on satiety and subsequent intakes when eaten as part of a mixed meal. Br J Nutr. 2006;96(3):587–95.CrossRef
76.
Leahy KE, Birch LL, Fisher JO, Rolls BJ. Reductions in entrée energy density increase children’s vegetable intake and reduce energy intake. Obesity. 2008;16:1559–65.PubMedCrossRef
77.
Tan SY, Mattes RD. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: a randomized, controlled trial. Eur J Clin Nutr. 2013;67:1205–14.PubMedPubMedCentralCrossRef
78.
Li SS, Kendall CWC, de Souza RJ, et al. Dietary pulses, satiety and food intake: a systematic review and meta-analysis of acute feeding trials. Obesity. 2014;22:1773–80.PubMedCrossRef
79.
Lafond DW, Greaves KA, Maki KC, et al. Effects of two dietary fibers as part of ready-to-eat cereal (RTEC) breakfasts on perceived appetite and gut hormones in overweight women. Forum Nutr. 2015;7:1245–66.
80.
Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res. 2012;56 doi:10.​3402/​fnr.​v56i0.​19103.
81.
King DE, Mainous AG, Lambourne CA. Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet. 2012;112:642–8.PubMedCrossRef
82.
Howarth NC, Huang TT, Roberts SB, McCrory MA. Dietary fiber and fat are associated with excess weight in young and middle-aged adults. J Am Diet Assoc. 2005;105(9):1365–72.PubMedCrossRef
83.
Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr. 2009;139:576–81.PubMedCrossRef
84.
Breneman CB, Tucker L. Dietary fibre consumption and insulin resistance – the role of body fat and physical activity. Br J Nutr. 2013;110:375–83.PubMedCrossRef
85.
Lovejoy J, DiGirolamo M. Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr. 1992;55:1174–9.PubMed
86.
Romaguera D, Angquist L, Du H, et al. Dietary determinants of changes in waist circumference adjusted for body mass index – a proxy measure of visceral adiposity. PLoS One. 2010;5(7):e11588. doi:10.​1371/​journal.​pone.​0011588.PubMedPubMedCentralCrossRef
87.
Hairston KG, Vitolins MZ, Norris JM, Anderson AM, Hanley AJ, Wagenknecht LE. Lifestyle factors and 5-year abdominal fat accumulation in a minority cohort: the IRAS family study. Obesity. 2012;20(2):421–7.PubMedCrossRef
88.
Koh-Banerjee P, Chu N-F, Spiegelman D, et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16,587 US men. Am J Clin Nutr. 2003;78:719–27.PubMed
89.
Mollard RC, Senechal M, MacIntosh AC, et al. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr. 2014;99:804–12.PubMedCrossRef
90.
Parikh S, Pollock NK, Bhagatwala J, et al. Adolescent fiber consumption is associated with visceral fat and inflammatory markers. J Clin Endocrinol Metab. 2012;97(8):1451–7.CrossRef
91.
Ma Y, Olendzki BC, Wang J, et al. Single-component versus multi-component dietary goals for the metabolic syndrome a randomized trial. Ann Intern Med. 2015;162:248–57.PubMedPubMedCentralCrossRef
92.
Lindstrom J, Peltonen M, Eriksson JG, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia. 2006;49:912–20.PubMedCrossRef
93.
Park MH, Kim DH, Lee EK, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res. 2014;37:1507–14.PubMedPubMedCentralCrossRef
94.
Jiao J, J-Y X, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9.PubMedCrossRef
95.
King DE, Mainous AG, Egan BM, et al. Fiber and C-reactive protein in diabetes, hypertension, and obesity. Diabetes Care. 2005;28(6):1487–9.PubMedCrossRef
96.
Lopez-Garcia E, Schulze MB, Fung TT, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80:1029–35.PubMed
97.
Silva FM, de Almeida JC, Feoli AM. Effect of diet on adiponectin levels in blood. Nutr Rev. 2011;69(10):599–612.PubMedCrossRef
98.
Baothman OA, Zamzami MA, Taher I, et al. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108. doi:10.​1186/​s12944-016-0278-4.PubMedPubMedCentralCrossRef
99.
Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol. 2014;20(47):17737–45.PubMedPubMedCentralCrossRef
100.
Serino M, Fernandez-Real JM, Garcıa Fuentes E, et al. The gut microbiota profile is associated with insulin action in humans. Acta Diabetol. 2013;50:753–61.PubMedCrossRef
101.
Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. doi:10.​1371/​journal.​pone.​ 0009085.PubMedPubMedCentralCrossRef
102.
Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.PubMedCrossRef
103.
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.PubMedCrossRef
104.
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5(19):1–10.
105.
Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83.PubMedCrossRef
106.
Milani C, Ferrario C, Turron F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. doi:10.​1111/​jhn.​12371.PubMedCrossRef
107.
Bozzetto L, Annuzzi G, Ragucci M, et al. Insulin resistance, postprandial GLP-1 and adaptive immunity are the main predictors of NAFLD in a homogeneous population at high cardiovascular risk. Nutr Metab Cardiovasc Dis. 2016;26(7):623–9.PubMedCrossRef
108.
Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat Inflamm. 2014;2014:9. doi:10.​1155/​2014/​162021.
109.
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60:470–512.PubMedPubMedCentralCrossRef
110.
Roelofsen H, Priebe MG, Vonk RJ, et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur J Clin Investig. 2012;42(4):357–64.CrossRef
111.
Holscher HD, Caporaso JG, Hooda S, Swanson KS, et al. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;10(1):55–64.CrossRef
112.
Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–75.PubMedCrossRef
113.
Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes. 2015;6(3):403–11.PubMedPubMedCentralCrossRef
114.
Karimi P, Farhangi MA, Sarmadi B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial. Ann Nutr Metab. 2016;68(2):85–93.PubMedCrossRef
115.
Bodinham CL, Smith L, Thomas EL, et al. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect. 2014;3:75–84.PubMedPubMedCentralCrossRef
116.
Aliasgharzadeh A, Khalili M, Mirtaheri E, et al. A combination of prebiotic inulin and oligofructose improve some cardiovascular disease risk factors in women with type 2 diabetes: a randomized controlled clinical trial. Adv Pharm Bull. 2015;5(4):507–14.PubMedPubMedCentralCrossRef
117.
Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. A randomized trial. JAMA. 2004;292(12):1440–6.PubMedCrossRef
118.
Pal S, Khossousi A, Binns C, et al. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.PubMedCrossRef
119.
Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr. 2010;104:797–802.PubMedCrossRef
120.
U.S. Department of Health and Human Services. Guidance for industry: diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention. 2008. http://​www.​fda.​gov/​cder. Accessed 28 Aug 2016.
121.
Stratton IM, Adler AI, Neil AW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.PubMedPubMedCentralCrossRef
122.
Heikkila HM, Krachler B, Rauramaa R, Schwab US. Diet, insulin secretion and insulin sensitivity – the Dose–Responses to Exercise Training (DR’s EXTRA) Study. Br J Nutr. 2014;112:1530–41.PubMedCrossRef
123.
Jenkins DJ, Leeds AR, Gassull MA, Cochet B, Alberti GM. Decrease in postprandial insulin and glucose concentration by guar and pectin. Ann Intern Med. 1977;86(1):20–3.PubMedCrossRef
124.
Sierra M, Garcia JJ, Fernandez N, et al. Effects of ispaghula husk and guar gum on postprandial glucose and insulin concentrations in healthy subjects. Eur J Clin Nutr. 2001;55:235–43.PubMedCrossRef
125.
Behme MT, Dupre J. All bran vs corn flakes: plasma glucose and insulin response in young females. Am J Clin Nutr. 1989;50:1240–3.PubMed
126.
Maki KC, Pelkman CL, Finocchiaro ET. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr. 2012;142:717–23.PubMedPubMedCentralCrossRef
127.
Heaton KW, Marcus SN, Emmett PM, Bolton CH. Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am J Clin Nutr. 1988;47:675–82.PubMed
128.
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1. Nutr Today. 2015;50(2):82–9.PubMedPubMedCentralCrossRef
129.
Weickert MO, Pfeiffer AFH. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008;138:439–42.PubMed
130.
He LX, Zhao YS, Li Y. The difference between oats and beta-glucan extract intake in the management of HbAlc, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct. 2016;7(3):1413–28.PubMedCrossRef
131.
Hou Q, Li Y, Li L, et al. The metabolic effects of oats intake in patients with type 2 diabetes: a systematic review and meta-analysis. Nutrients. 2015;7:10369–87.PubMedPubMedCentralCrossRef
132.
Li X, Cai X, Ma X, et al. Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight type-2 diabetics: a randomize control trial. Nutrients. 2016;8:549.PubMedCentralCrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »