Skip to main content
Top

02-20-2018 | Diabetes self-management | Article

Patients’ and caregivers’ experiences of using continuous glucose monitoring to support diabetes self-management: qualitative study

Journal: BMC Endocrine Disorders

Authors: J. Lawton, M. Blackburn, J. Allen, F. Campbell, D. Elleri, L. Leelarathna, D. Rankin, M. Tauschmann, H. Thabit, R. Hovorka

Publisher: BioMed Central

Abstract

Background

Continuous glucose monitoring (CGM) enables users to view real-time interstitial glucose readings and provides information on the direction and rate of change of blood glucose levels. Users can also access historical data to inform treatment decisions. While the clinical and psychological benefits of CGM are well established, little is known about how individuals use CGM to inform diabetes self-management. We explored participants’ experiences of using CGM in order to provide recommendations for supporting individuals to make optimal use of this technology.

Methods

In-depth interviews (n = 24) with adults, adolescents and parents who had used CGM for ≥4 weeks; data were analysed thematically.

Results

Participants found CGM an empowering tool because they could access blood glucose data effortlessly, and trend arrows enabled them to see whether blood glucose was rising or dropping and at what speed. This predicative information aided short-term lifestyle planning and enabled individuals to take action to prevent hypoglycaemia and hyperglycaemia. Having easy access to blood glucose data on a continuous basis also allowed participants to develop a better understanding of how insulin, activity and food impacted on blood glucose. This understanding was described as motivating individuals to make dietary changes and break cycles of over-treating hypoglycaemia and hyperglycaemia. Participants also described how historical CGM data provided a more nuanced picture of blood glucose control than was possible with blood glucose self-monitoring and, hence, better information to inform changes to background insulin doses and mealtime ratios. However, while participants expressed confidence making immediate adjustments to insulin and lifestyle to address impending hypoglycaemia and hypoglycaemia, most described needing and expecting health professionals to interpret historical CGM data and determine changes to background insulin doses and mealtime ratios. While alarms could reinforce a sense of hypoglycaemic safety, some individuals expressed ambivalent views, especially those who perceived alarms as signalling personal failure to achieve optimal glycaemic control.

Conclusions

CGM can be an empowering and motivational tool which enables participants to fine-tune and optimize their blood glucose control. However, individuals may benefit from psycho-social education, training and/or technological support to make optimal use of CGM data and use alarms appropriately.
Literature
1.
Wong JC, Foster NC, Maahs DM, Raghinaru D, Bergenstal RM, Ahmann AJ, et al. Real-time continuous glucose monitoring among participants in the T1D exchange clinic registry. Diabetes Care. 2014;37:2702–9.CrossRefPubMedPubMedCentral
2.
Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;343:d3805.CrossRefPubMedPubMedCentral
3.
Battelino T, Conget I, Olsen B, Schütz-Fuhrmann I, Hommel E, Hoogma R, et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia. 2012;55:3155–62.CrossRefPubMedPubMedCentral
4.
Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017;317:371–8.CrossRefPubMed
5.
Ly TT, Nicholas JA, Retterath A, Lim EM, Davis EA, Jones TW. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA. 2013;310:1240–7.CrossRefPubMed
6.
van Beers CA, DeVries JH, Kleijer SJ, Smits MM, Geelhoed-Duijvestijn PH, Kramer MH, et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016;4:893–902.CrossRefPubMed
7.
Hommel E, Olsen B, Battelino T, Conget I, Schütz-Fuhrmann I, Hoogma R, et al. Impact of continuous glucose monitoring on quality of life, treatment satisfaction, and use of medical care resources: analyses from the SWITCH study. Acta Diabetol. 2014;51:845–51.CrossRefPubMedPubMedCentral
8.
Tansey M, Laffel L, Cheng J, Beck R, Coffey J, Huang E, et al. Satisfaction with continuous glucose monitoring in adults and youths with type 1 diabetes. Diabet Med. 2011;28:1118–22.CrossRefPubMed
9.
Beck R, Lawrence J, Laffel L, Wysocki T, Xing D, Huang E, et al. Quality-of-life measures in children and adults with type 1 diabetes: Juvenile Diabetes Research Foundation continuous glucose monitoring randomized trial. Diabetes Care. 2010;33:2175–7.CrossRefPubMed
10.
Halford J, Harris C. Determining clinical and psychological benefits and barriers with continuous glucose monitoring therapy. Diabetes Technol Ther. 2010;12:201–5.CrossRefPubMed
11.
Polonsky WH, Hessler D. What are the quality of life-related benefits and losses associated with real-time continuous glucose monitoring? A survey of current users. Diabetes Technol Ther. 2013;15:295–301.CrossRefPubMed
12.
Rashotte J, Tousignant K, Richardson C, Fothergill-Bourbonnais F, Nakhla MM, Olivier P, et al. Living with sensor-augmented pump therapy in type 1 diabetes: Adolescents’ and parents’ search for harmony. Can J Diabetes. 2014;38:256–62.CrossRefPubMed
13.
Schmidt S, Duun-Henriksen AK, Nørgaard K. Psychosocial factors and adherence to continuous glucose monitoring in type 1 diabetes. J Diabetes Sci Technol. 2012;6:986–7.CrossRefPubMedPubMedCentral
14.
Ritholz M, Atakov-Castillo A, Beste M, Beverly E, Leighton A, Weinger K, et al. Psychosocial factors associated with use of continuous glucose monitoring. Diabet Med. 2010;27:1060–5.CrossRefPubMed
15.
Ritholz M, Beste M, Edwards S, Beverly E, Atakov-Castillo A, Wolpert H. Impact of continuous glucose monitoring on diabetes management and marital relationships of adults with type 1 diabetes and their spouses: a qualitative study. Diabet Med. 2014;31:47–54.CrossRefPubMed
16.
Pickup JC, Ford Holloway M, Samsi K. Real-time continuous glucose monitoring in type 1 diabetes: a qualitative framework analysis of patient narratives. Diabetes Care. 2015;38:544–50.PubMed
17.
Bally L, Tauschmann M, Allen JM, Hartnell S, Wilinska ME, Exall J, et al. Assessing the effectiveness of 3 months day-and-night home closed-loop control combined with pump suspend feature compared to sensor augmented pump therapy in youths and adults with sub-optimally controlled type 1 diabetes: a randomised parallel study protocol. BMJ Open. 2017;7(7):e016738.CrossRefPubMedPubMedCentral
18.
Lawton J, Waugh N, Barnard K, Noyes K, Harden J, Stephen J, et al. Challenges of optimizing glycaemic control in children with type 1 diabetes: a qualitative study of parents' experiences and views. Diabet Med. 2015;32:1063–70.CrossRefPubMed
19.
Williams C. Doing health, doing gender: teenagers, diabetes and asthma. Soc Sci Med. 2000;50:387–96.CrossRefPubMed
20.
Pope C, Mays N. Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research. BMJ. 1995;311:42–5.CrossRefPubMedPubMedCentral
21.
Glaser B, Strauss A. The discovery of grounded theory. Chicago: Aldine Publishing Co.; 1967.
22.
Pettus J, Price DA, Edelman SV. How patients with type 1 diabetes translate continuous glucose monitoring data into diabetes management decisions. Endocr Pract. 2015;21:613–20.CrossRefPubMed
23.
Bode BW, Battelino T. Continuous glucose monitoring in 2014. Diabetes Technol Ther. 2015;17(Suppl 1):S12–20.CrossRefPubMed
24.
Battelino T, Liabat S, Veeze H, Castañeda J, Arrieta A, Cohen O. Routine use of continuous glucose monitoring in 10 501 people with diabetes mellitus. Diabet Med. 2015;32:1568–74.CrossRefPubMedPubMedCentral
25.
Lawton J, Rankin D, Cooke D, Elliott J, Amiel S, Heller S, et al. Patients’ experiences of adjusting insulin doses when implementing flexible intensive insulin therapy: a longitudinal, qualitative investigation. Diabetes Res Clin Pract. 2012;98:236–42.CrossRefPubMed
26.
Lawton J, Kirkham J, Rankin D, Barnard K, Cooper C, Taylor C, et al. Perceptions and experiences of using automated bolus advisors amongst people with type 1 diabetes: a longitudinal qualitative investigation. Diabetes Res Clin Pract. 2014;106:443–50.CrossRefPubMedPubMedCentral
27.
James S, Perry L, Gallagher R, Lowe J. Diabetes educators: perceived experiences, supports and barriers to use of common diabetes-related technologies. J Diabetes Sci Technol. 2016;10:1115–21.CrossRefPubMedPubMedCentral
28.
Reddy M, Pesl P, Xenou M, Toumazou C, Johnston D, Georgiou P, et al. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study. Diabetes Technol Ther. 2016;18:487–93.CrossRefPubMed
29.
Glooko, Inc. Remote Patient Monitoring for Diabetes Mobile and population health for patients and care teams. https://​www.​glooko.​com. Accessed 24 May 2017.
30.
Barnard KD, Wysocki T, Allen JM, Elleri D, Thabit H, Leelarathna L, et al. Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents. BMJ Open Diabetes Res Care. 2014;2:e000025.CrossRefPubMedPubMedCentral
31.
Shivers JP, Mackowiak L, Anhalt H. “Turn it off!”: diabetes device alarm fatigue considerations for the present and the future. J Diabetes Sci Technol. 2013;7:789–94.CrossRefPubMedPubMedCentral
32.
Jansen LA. Two concepts of therapeutic optimism. J Med Ethics. 2011;37:563–6.CrossRefPubMedPubMedCentral
33.
Battelino T, Bode BW. Continuous glucose monitoring in 2013. Diabetes Technol Ther. 2014;16(Suppl 1):S11–6.CrossRefPubMed
34.
Anhalt H. Limitations of continuous glucose monitor usage. Diabetes Technol Ther. 2016;18:115–7.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »