Skip to main content
Top

02-05-2018 | Coronary artery disease | Article

Impact of diabetes and early revascularization on the need for late and repeat procedures

Journal: Cardiovascular Diabetology

Authors: Ady Orbach, David A. Halon, Ronen Jaffe, Ronen Rubinshtein, Basheer Karkabi, Moshe Y. Flugelman, Barak Zafrir

Publisher: BioMed Central

Abstract

Background

Coronary artery disease often progresses more rapidly in diabetics, but the integrated impact of diabetes and early revascularization status on late or repeat revascularization in the contemporary era is less clear.

Methods

Coronary angiography was performed in 12,420 patients between the years 2000–2015 and early revascularization status [none, percutaneous coronary intervention (PCI) or bypass surgery (CABG)] was determined. Subsequent revascularization procedures were recorded over a median follow-up of 67 months and its relation to diabetic and baseline revascularization status was studied.

Results

Early revascularization status was none in 5391, PCI in 5682 and CABG in 1347 patients. Late revascularization rates were 10, 26 and 11.1% respectively. Diabetes was present in 37%; a stepwise relationship of diabetic status with late revascularization was observed: no diabetes (reference) 14.4%, non-insulin treated diabetes 21% (adjusted HR 1.35, 95% CI 1.23–1.49, p < 0.001) and insulin-treated diabetes 32.8% (adjusted HR 2.20, 95% CI 1.91–2.54, p < 0.001), which was similar in magnitude for each early revascularization state (none, PCI or CABG). Further revascularizations (≥ 2) were also significantly more common in diabetics, in particular if insulin-treated. Glycosylated hemoglobin level was moderately associated with late revascularization in diabetics after early PCI but not following diagnostic catheterization or CABG.

Conclusions

Diabetic status graded by treatment, and in particular insulin therapy, is a strong predictor for late or repeat revascularization irrespective of early revascularization status. The high rate of repeat revascularization in diabetics following PCI remains a challenging issue.
Literature
1.
Iijima R, Ndrepepa G, Mehilli J, Markwardt C, Bruskina O, Pache J, et al. Impact of diabetes mellitus on long-term outcomes in the drug-eluting stent era. Am Heart J. 2007;154:688–93.CrossRefPubMed
2.
Naito R, Kasai T. Coronary artery disease in type 2 diabetes mellitus: recent treatment strategies and future perspectives. World J Cardiol. 2015;7(3):119–24.CrossRefPubMedPubMedCentral
3.
Kedhi E, Généreux P, Palmerini T, McAndrew TC, Parise H, Mehran R, et al. Impact of coronary lesion complexity on drug-eluting stent outcomes in patients with and without diabetes mellitus: analysis from 18 pooled randomized trials. J Am Coll Cardiol. 2014;63(20):2111–8.CrossRefPubMed
4.
Sedlis SP, Hartigan PM, Teo KK, Maron DJ, Spertus JA, Mancini GB, et al. Effect of PCI on long-term survival in patients with stable ischemic heart disease. N Engl J Med. 2015;373(20):1937–44.CrossRefPubMedPubMedCentral
5.
Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40.CrossRefPubMed
6.
Bauters C, Lemesle G. Screening for asymptomatic coronary artery disease in patients with diabetes mellitus: a systematic review and meta-analysis of randomized trials. BMC Cardiovasc Disord. 2016;16:90.CrossRefPubMedPubMedCentral
7.
Mavromatis K, Samady H, King SB 3rd. Revascularization in patients with diabetes: PCI or CABG or none at all. Curr Cardiol Rep. 2015;17:565.CrossRefPubMed
8.
Buccheri S, Capodanno D. Coronary revasculariation strategies in patients swith multivessel disease: is it all about diabetes? Cardiovasc Diagn Ther. 2017;7(3):E1–3.CrossRefPubMedPubMedCentral
9.
Plutzky J, Zafrir B, Brown JD. Vascular biology of atherosclerosis in patients with diabetes: inflammation, dyslipidemia, hypercoagulability, and endothelial dysfunction. In: Diabetes mellitus. A companion to Braunwald’s heart disease. 1st ed. New York: Elsevier Saunders; 2014. p. 111–25.
10.
Kennedy MW, Fabris E, Suryapranata H, Kedhi E. Is ischemia the only factor predicting cardiovascular outcomes in all diabetes mellitus patients? Cardiovasc Diabetol. 2017;16(1):51.CrossRefPubMedPubMedCentral
11.
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43.CrossRefPubMedPubMedCentral
12.
Aronson D, Edelman ER. Revascularization for coronary artery disease in diabetes mellitus: angioplasty, stents and coronary artery bypass grafting. Rev Endocr Metab Disord. 2010;11(1):75–86.CrossRefPubMedPubMedCentral
13.
Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, et al. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 2008;52(4):255–62.CrossRefPubMed
14.
Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. J Am Coll Cardiol Interv. 2012;5(11):1150–8.CrossRef
15.
Lindsey JB, House JA, Kennedy KF, Marso SP. Diabetes duration is associated with increased thin-cap fibroatheroma detected by intravascular ultrasound with virtual histology. Circ Cardiovasc Interv. 2009;2(6):543–8.CrossRefPubMed
16.
Currie CJ, Johnson JA. The safety profile of exogenous insulin in people with type diabetes: justification for concern. Diabetes Obes Metab. 2012;14:1–4.CrossRefPubMed
17.
Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, et al. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105:576–82.CrossRefPubMed
18.
Angiolillo DJ, Bernardo E, Ramirez C, Costa MA, Sabaté M, Jimenez-Quevedo P, et al. Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol. 2006;48:298–304.CrossRefPubMed
19.
Sabate M, Jimenez-Quevedo P, Angiolillo DJ, Gómez-Hospital JA, Alfonso F, Hernández-Antolín R, et al. Randomized comparison of sirolimus-eluting stent versus standard stent for percutaneous coronary revascularization in diabetic patients: the diabetes and sirolimus-eluting stent (DIABETES) trial. Circulation. 2005;112:2175–83.CrossRefPubMed
20.
Ortolani P, Balducelli M, Marzaroli P, Piovaccari G, Menozzi A, Guiducci V, et al. Two-year clinical outcomes with drug-eluting stents for diabetic patients with de novo coronary lesions: results from a real-world multicenter registry. Circulation. 2008;117:923–30.CrossRefPubMed
21.
Daemen J, Kuck KH, Macaya C, LeGrand V, Vrolix M, Carrie D, et al. Multivessel coronary revascularization in patients with and without diabetes mellitus 3-year follow-up of the ARTS-II (Arterial Revascularization Therapies Study-Part II) trial. J Am Coll Cardiol. 2008;52:1957–67.CrossRefPubMed
22.
Stone GW, Kedhi E, Kereiakes DJ, Parise H, Fahy M, Serruys PW, et al. Differential clinical responses to everolimus-eluting and paclitaxel-eluting coronary stents in patients with and without diabetes mellitus. Circulation. 2011;124(8):893–900.CrossRefPubMed
23.
Park KW, Lee JM, Kang SH, Ahn HS, Kang HJ, Koo BK, et al. Everolimus-eluting-Xience-v/Promus versus zotarolimus-eluting resolute stents in patients with diabetes mellitus. JACC Cardiovasc Interv. 2014;7(5):471–81.CrossRefPubMed
24.
Harada Y, Colleran R, Kufner S, Giacoppo D, Rheude T, Michel J, et al. Five-year clinical outcomes in patients with diabetes mellitus treated with polymer-free sirolimus- and probucol-eluting stents versus second-generation zotarolimus-eluting stents: a subgroup analysis of a randomized controlled trial. Cardiovasc Diabetol. 2016;15(1):124.CrossRefPubMedPubMedCentral
25.
Bundhun PK, Li N, Chen MH. Adverse cardiovascular outcomes between insulin-treated and non-insulin treated diabetic patients after percutaneous coronary intervention: a systematic review and meta-analysis. Cardiovasc Diabetol. 2015;14:135.CrossRefPubMedPubMedCentral
26.
Silber S, Serruys PW, Leon MB, Meredith IT, Windecker S, Neumann FJ, et al. Clinical outcome of patients with and without diabetes mellitus after percutaneous coronary intervention with the resolute zotarolimus-eluting stent: 2-year results from the prospectively pooled analysis of the international global RESOLUTE program. JACC Cardiovasc Interv. 2013;6(4):357–68.CrossRefPubMed
27.
Bundhun PK, Bhurtu A, Soogund MZ, Long MY. Comparing the clinical outcomes between drug eluting stents and bare metal stents in patients with insulin-treated type 2 diabetes mellitus: a systematic review and meta-analysis of 10 randomized controlled trials. PLoS ONE. 2016;11(4):e0154064.CrossRefPubMedPubMedCentral
28.
Ariyaratne TV, Ademi Z, Yap CH, Billah B, Rosenfeldt F, Yan BP, et al. Prolonged effectiveness of coronary artery bypass surgery versus drug-eluting stents in diabetics with multi-vessel disease: an updated systematic review and meta-analysis. Int J Cardiol. 2014;176(2):346–53.CrossRefPubMed
29.
Kapur A, Hall R, Malik I, Qureshi AC, Butts J, de Belder M, et al. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients: 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol. 2010;55:432–40.CrossRefPubMed
30.
Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.CrossRefPubMed
31.
Mohr FW, Morice MC, Kappetein AP, Feldman TE, Ståhle E, Colombo A, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–38.CrossRefPubMed
32.
Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.CrossRefPubMed
33.
Dangas GD, Farkouh ME, Sleeper LA, Yang M, Schoos MM, Macaya C, et al. Long term outcome of PCI versus CABG in insulin and non-insulin treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64(12):1189–97.CrossRefPubMed
34.
Bangalore S, Toklu B, Feit F. Outcomes with coronary artery bypass graft surgery versus percutaneous coronary intervention for patients with diabetes mellitus: can newer generation drug-eluting stents bridge the gap? Circ Cardiovasc Interv. 2014;7(4):518–25.CrossRefPubMed
35.
Bundhun PK, Wu ZJ, Chen MH. Coronary artery bypass surgery compared with percutaneous coronary interventions in patients with insulin-treated type 2 diabetes mellitus: a systematic review and meta-analysis of 6 randomized controlled trials. Cardiovasc Diabetol. 2016;15:2.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »