Abstract
Purpose of Review
The purpose of this review is to summarize the therapeutic approach for lipodystrophy syndromes with conventional treatment options and metreleptin therapy in detail and to point out the current investigational treatments in development.
Recent Findings
The observation of leptin deficiency in patients with lipodystrophy and the potential of leptin replacement to rescue metabolic abnormalities in animal models of lipodystrophy were followed by the first clinical study of leptin therapy in patients with severe lipodystrophy. This and several other long-term studies demonstrated important benefits of recombinant human leptin (metreleptin) to treat metabolic abnormalities of lipodystrophy. These studies ultimately led to the recent FDA approval of metreleptin for the treatment of generalized lipodystrophy and EMA approval for both generalized and partial lipodystrophy. Additional research efforts in progress focus on novel treatment options, predominantly for patients with partial lipodystrophy.
Summary
Current treatment of generalized lipodystrophy includes metreleptin replacement as an adjunct to diet and standard treatment approach for metabolic consequences of lipodystrophy. Beyond metreleptin, a number of different compounds and treatment modalities are being studied for the treatment of partial lipodystrophy.
5.
• Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11.
https://doi.org/10.1210/jc.2016-2466.
A multisociety practice guideline summarizing the diagnosis and management of lipodystrophy syndromes.
CrossRefPubMedPubMedCentral
6.
Akinci B, Sahinoz M, Oral E. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Lipodystrophy syndromes: presentation and Treatment. South Dartmouth: Endotext; 2000.
8.
Handelsman Y, Oral EA, Bloomgarden ZT, Brown RJ, Chan JL, Einhorn D, et al. The clinical approach to the detection of lipodystrophy - an AACE consensus statement. Endocr Pract. 2013;19(1):107–16.
CrossRefPubMedPubMedCentral
17.
Vantyghem MC, Vigouroux C, Magre J, Desbois-Mouthon C, Pattou F, Fontaine P, et al. Late-onset lipoatrophic diabetes. Phenotypic and genotypic familial studies and effect of treatment with metformin and lispro insulin analog. Diabetes Care. 1999;22(8):1374–6.
CrossRefPubMed
20.
McLaughlin PD, Ryan J, Hodnett PA, O'Halloran D, Maher MM. Quantitative whole-body MRI in familial partial lipodystrophy type 2: changes in adipose tissue distribution coincide with biochemical improvement. AJR Am J Roentgenol. 2012;199(5):W602–6.
https://doi.org/10.2214/AJR.11.8110.
CrossRefPubMed
21.
•• Arioglu E, Duncan-Morin J, Sebring N, Rother KI, Gottlieb N, Lieberman J, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263–74.
This is an open-label prospective study showing the benefits of TZDs in patients with partial lipodystrophy.
25.
Cochran E, Musso C, Gorden P. The use of U-500 in patients with extreme insulin resistance. Diabetes Care. 2005;28(5):1240–4.
CrossRefPubMed
26.
Banning F, Rottenkolber M, Freibothe I, Seissler J, Lechner A. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792–4.
https://doi.org/10.1111/dme.13527.
CrossRefPubMed
28.
Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes. 2017;66(4):1030–40.
https://doi.org/10.2337/db16-0733.
CrossRefPubMed
30.
Macallan DC, Baldwin C, Mandalia S, Pandol-Kaljevic V, Higgins N, Grundy A, et al. Treatment of altered body composition in HIV-associated lipodystrophy: comparison of rosiglitazone, pravastatin, and recombinant human growth hormone. HIV Clin Trials. 2008;9(4):254–68.
https://doi.org/10.1310/hct0904-254.
CrossRefPubMed
31.
•• Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–8.
https://doi.org/10.1056/NEJMoa012437.
This is the first clinical study showing dramatic benefits of leptin therapy in patients with lipodystrophy.
34.
Brown RJ, Oral EA, Cochran E, Araújo-Vilar D, Savage DB, Long A, et al. Long-term effectiveness and safety of metreleptin in the treatment of patients with generalized lipodystrophy. Endocrine. 2018;60(3):479–89.
https://doi.org/10.1007/s12020-018-1589-1.
35.
Araujo-Vilar D, Sánchez-Iglesias S, Guillín-Amarelle C, Castro A, Lage M, Pazos M, et al. Recombinant human leptin treatment in genetic lipodystrophic syndromes: the long-term Spanish experience. Endocrine. 2015;49(1):139–47.
https://doi.org/10.1007/s12020-014-0450-4.
37.
Tsoukas MA MC. Endocrinology Adult and Pediatric. In: Jameson JL DL, editor. 7 ed.: Saunders,
In Press.
38.
McDuffie JR, Riggs PA, Calis KA, Freedman RJ, Oral EA, DePaoli AM, et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J Clin Endocrinol Metab. 2004;89(9):4258–63.
https://doi.org/10.1210/jc.2003-031868.
CrossRefPubMed
39.
Moran SA, Patten N, Young JR, Cochran E, Sebring N, Reynolds J, et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism. 2004;53(4):513–9.
CrossRefPubMed
40.
Ebihara K, Kusakabe T, Hirata M, Masuzaki H, Miyanaga F, Kobayashi N, et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab. 2007;92(2):532–41.
https://doi.org/10.1210/jc.2006-1546.
CrossRefPubMed
41.
Schlogl H, Muller K, Horstmann A, Miehle K, Puschel J, Villringer A, et al. Leptin substitution in patients with lipodystrophy: neural correlates for long-term success in the normalization of eating behavior. Diabetes. 2016;65(8):2179–86.
https://doi.org/10.2337/db15-1550.
CrossRefPubMed
42.
Schlogl H, Muller K, Horstmann A, Pleger B, Miehle K, Moller H et al. Leptin-substitution in patients with congenital lipodystrophy increases connectivity in reward-related brain structures: an fMRI study. Exp Clin Endocrinol Diabetes 2014;122(3). doi:
https://doi.org/10.1055/s-0034-1371982.
43.
Schlogl H, Muller K, Horstmann A, Miehle K, Pleger B, Moller H, et al. Leptin-substitution increases connectivity in reward-related brain areas in patients with congenital lipodystrophy. Diabetologia. 2015;58:S71–S.
44.
• Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1345–50.
https://doi.org/10.1172/JCI15001.
This study shows the efficacy of leptin treatment to improve insulin-stimulated hepatic and peripheral glucose metabolism in lipodystrophic patients.
CrossRefPubMedPubMedCentral
45.
Vatier C, Fetita S, Boudou P, Tchankou C, Deville L, Riveline J, et al. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes. Diabetes Obes Metab. 2016;18(7):693–7.
https://doi.org/10.1111/dom.12606.
CrossRefPubMed
47.
• Diker-Cohen T, Cochran E, Gorden P, Brown RJ. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100(5):1802–10.
https://doi.org/10.1210/jc.2014-4491.
This study defines predictors for treatment response to metreleptin.
CrossRefPubMedPubMedCentral
51.
Ajluni N, Dar M, Xu J, Neidert AH, Oral EA. Efficacy and safety of metreleptin in patients with partial lipodystrophy: lessons from an expanded access program. J Diabetes Metab 2016;7(3). doi:
https://doi.org/10.4172/2155-6156.1000659.
52.
Simha V, Subramanyam L, Szczepaniak L, Quittner C, Adams-Huet B, Snell P, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785–92.
https://doi.org/10.1210/jc.2011-2229.
CrossRefPubMed
54.
Simha V, Szczepaniak LS, Wagner AJ, DePaoli AM, Garg A. Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy. Diabetes Care. 2003;26(1):30–5.
CrossRefPubMed
56.
• Safar Zadeh E, Lungu AO, Cochran EK, Brown RJ, Ghany MG, Heller T, et al. The liver diseases of lipodystrophy: the long-term effect of leptin treatment. J Hepatol. 2013;59(1):131–7.
https://doi.org/10.1016/j.jhep.2013.02.007.
The study reports the effect of metreleptin on hepatic disease associated with lipodystrophy.
CrossRefPubMed
59.
Casey SP, Lokan J, Testro A, Farquharson S, Connelly A, Proietto J, et al. Post-liver transplant leptin results in resolution of severe recurrence of lipodystrophy-associated nonalcoholic steatohepatitis. Am J Transplant. 2013;13(11):3031–4.
https://doi.org/10.1111/ajt.12436.
CrossRefPubMed
61.
• Brown RJ, Valencia A, Startzell M, Cochran E, Walter PJ, Garraffo HM, et al. Metreleptin improves insulin sensitivity independent of food intake in humans with lipodystrophy. J Clin Invest. 2018.
https://doi.org/10.1172/JCI95476.
The study shows that metreleptin improves insulin sensitivity and decreases hepatic and circulating triglycerides independent of its effects on food intake.
62.
Javor ED, Moran SA, Young JR, Cochran EK, DePaoli AM, Oral EA, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab. 2004;89(7):3199–207.
https://doi.org/10.1210/jc.2003-032140.
CrossRefPubMed
63.
• Oral EA, Ruiz E, Andewelt A, Sebring N, Wagner AJ, Depaoli AM, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87(7):3110–7.
https://doi.org/10.1210/jcem.87.7.8591.
The study investigates the effect of metreleptin on pituitary hormones in patients with lipodystrophy.
CrossRefPubMed
64.
Musso C, Cochran E, Javor E, Young J, Depaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism. 2005;54(2):255–63.
https://doi.org/10.1016/j.metabol.2004.08.021.
CrossRefPubMed
65.
Abel BS, Muniyappa R, Stratton P, Skarulis MC, Gorden P, Brown RJ. Effects of recombinant human leptin (metreleptin) on nocturnal luteinizing hormone secretion in lipodystrophy patients. Neuroendocrinology. 2016;103(3–4):402–7.
https://doi.org/10.1159/000439432.
CrossRefPubMed
67.
Oral EA, Javor ED, Ding L, Uzel G, Cochran EK, Young JR, et al. Leptin replacement therapy modulates circulating lymphocyte subsets and cytokine responsiveness in severe lipodystrophy. J Clin Endocrinol Metab. 2006;91(2):621–8.
https://doi.org/10.1210/jc.2005-1220.
CrossRefPubMed
74.
Chan JL, Koda J, Heilig JS, Cochran EK, Gorden P, Oral EA, et al. Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy. Clin Endocrinol. 2016;85(1):137–49.
https://doi.org/10.1111/cen.12980.
CrossRef
75.
Beltrand J, Lahlou N, Le Charpentier T, Sebag G, Leka S, Polak M, et al. Resistance to leptin-replacement therapy in Berardinelli-Seip congenital lipodystrophy: an immunological origin. Eur J Endocrinol. 2010;162(6):1083–91.
https://doi.org/10.1530/EJE-09-1027.
CrossRefPubMed
81.
Kuzuya H, Matsuura N, Sakamoto M, Makino H, Sakamoto Y, Kadowaki T, et al. Trial of insulinlike growth factor I therapy for patients with extreme insulin resistance syndromes. Diabetes. 1993;42(5):696–705.
CrossRefPubMed
82.
Moses AC, Morrow LA, O'Brien M, Moller DE, Flier JS. Insulin-like growth factor I (rhIGF-I) as a therapeutic agent for hyperinsulinemic insulin-resistant diabetes mellitus. Diabetes Res Clin Pract. 1995;28(Suppl):S185–94.
CrossRefPubMed
83.
Satoh M, Yoshizawa A, Takesue M, Saji T, Yokoya S. Long-term effects of recombinant human insulin-like growth factor I treatment on glucose and lipid metabolism and the growth of a patient with congenital generalized lipodystrophy. Endocr J. 2006;53(5):639–45.
CrossRefPubMed
84.
Grimberg A. Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther. 2003;2(6):630–5.
CrossRefPubMed
85.
Chernausek SD, Backeljauw PF, Frane J, Kuntze J, Underwood LE, Group GHISC. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity. J Clin Endocrinol Metab. 2007;92(3):902–10.
https://doi.org/10.1210/jc.2006-1610.
CrossRefPubMed
86.
Bang P, Polak M, Woelfle J, Houchard A, Group EIRS. Effectiveness and safety of rhIGF-1 therapy in children: the European Increlex® Growth Forum Database Experience. Horm Res Paediatr. 2015;83(5):345–57.
https://doi.org/10.1159/000371798.
CrossRefPubMed
88.
Gaudet D, Digenio A, Alexander V, Arca M, Jones A, Stroes E, et al. The APPROACH study: a randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (Fcs). Clin Cardiol. 2017;40:14.
93.
Bisgaier CL, Essenburg AD, Barnett BC, Auerbach BJ, Haubenwallner S, Leff T, et al. A novel compound that elevates high density lipoprotein and activates the peroxisome proliferator activated receptor. J Lipid Res. 1998;39(1):17–30.
PubMed
94.
Srivastava RAK, Cornicelli JA, Markham B, Bisgaier CL. Gemcabene, a first-in-class lipid-lowering agent in late-stage development, down-regulates acute-phase C-reactive protein via C/EBP-delta-mediated transcriptional mechanism. Mol Cell Biochem. 2018.
https://doi.org/10.1007/s11010-018-3353-5.
96.
Bays HE, McKenney JM, Dujovne CA, Schrott HG, Zema MJ, Nyberg J, et al. Effectiveness and tolerability of a new lipid-altering agent, gemcabene, in patients with low levels of high-density lipoprotein cholesterol. Am J Cardiol. 2003;92(5):538–43.
CrossRefPubMed
100.
Baptista LS, da Silva KR, da Pedrosa CS, Claudio-da-Silva C, Carneiro JR, Aniceto M, et al. Adipose tissue of control and ex-obese patients exhibit differences in blood vessel content and resident mesenchymal stem cell population. Obes Surg. 2009;19(9):1304–12.
https://doi.org/10.1007/s11695-009-9899-2.
CrossRefPubMed