Skip to main content
Top

12-19-2017 | Cardiovascular disorders | Review | Article

New treatment options for lipid-lowering therapy in subjects with type 2 diabetes

Journal: Acta Diabetologica

Authors: Roberto Scicali, Antonino Di Pino, Viviana Ferrara, Francesca Urbano, Salvatore Piro, Agata Maria Rabuazzo, Francesco Purrello

Publisher: Springer Milan

Abstract

Dyslipidemias represent a variety of quantitative and/or qualitative lipoprotein abnormalities. According to etiology, we distinguish primary dyslipidemias with strictly genetic background and secondary ones with their origin in other disease or pathological states. Diabetic dyslipidemia is a type of secondary dyslipidemia and plays an important role in determining the cardiovascular risk of subjects with type 2 diabetes. In these patients, insulin resistance is responsible for overproduction and secretion of atherogenic very low density lipoprotein. In addition, insulin resistance promotes the production of small dense low-density lipoprotein (LDL) and reduces high-density lipoprotein (HDL) production. Cardiovascular disease remains a leading cause of morbidity and mortality in diabetic patients. Previous results support the role for small, dense LDL particles in the etiology of atherosclerosis and their association with coronary artery disease. Moreover, lowering LDL cholesterol reduces the risk of cardiovascular death. Therefore, the European guidelines for the management of dyslipidemias recommend an LDL cholesterol goal < 100 mg/dL in diabetic subjects without cardiovascular events. Moreover, if triglycerides (TG) are elevated (> 400 mg/dL), they recommend a non-HDL cholesterol goal < 130 mg/dL in diabetic individuals without cardiovascular events. Statins are the first line of LDL-lowering therapy in diabetic patients and combined therapy with ezetimibe and statins could be useful in very high cardiovascular risk diabetic subjects. Furthermore, the effect of a fibrate as an add-on treatment to a statin could improve the lipid profile in diabetic individuals with high TG and low HDL cholesterol. Regarding new therapies, recent data from phase III trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors considerably decrease LDL cholesterol. Thus, they may be useful in diabetic patients with concomitant diseases such as familial dyslipidemia, recurrent cardiovascular events, and elevated LDL cholesterol after second drug administration in addition to maximal statin dose or statin intolerance.
Literature
1.
Anderson KM (1987) Cholesterol and mortality. JAMA 257:2176. https://​doi.​org/​10.​1001/​jama.​1987.​03390160062027 CrossRefPubMed
2.
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA, J Am Med Assoc 285:2486–2497. https://​doi.​org/​10.​1001/​jama.​285.​19.​2486 CrossRef
3.
Fredrickson DS (1971) An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med 75:471. https://​doi.​org/​10.​7326/​0003-4819-75-3-471 CrossRefPubMed
4.
Tomkin G, Owens D (2017) Diabetes and dyslipidemia: characterizing lipoprotein metabolism. Diabetes Metab Syndr Obes Targets Ther 10:333–343. https://​doi.​org/​10.​2147/​DMSO.​S115855 CrossRef
5.
Haffner SM, Lehto S, Rönnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. https://​doi.​org/​10.​1056/​NEJM199807233390​404 CrossRefPubMed
6.
Taskinen MR (2002) Controlling lipid levels in diabetes. Acta Diabetol 39(Suppl 2):S29–S34CrossRefPubMed
7.
Kelley DE, McKolanis TM, Hegazi RAF et al (2003) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:906–916. https://​doi.​org/​10.​1152/​ajpendo.​00117.​2003 CrossRef
8.
Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC et al (2002) Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem 277:793–803. https://​doi.​org/​10.​1074/​jbc.​M106737200 CrossRefPubMed
9.
Vergès B (2010) Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 211:353–360. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2010.​01.​028 CrossRefPubMed
10.
Calanna S, Scicali R, Di Pino A et al (2014) Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Nutr Metab Cardiovasc Dis. https://​doi.​org/​10.​1016/​j.​numecd.​2014.​01.​013 PubMed
11.
Yusuf S, Hawken S, Ôunpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364:937–952. https://​doi.​org/​10.​1016/​S0140-6736(04)17018-9 CrossRefPubMed
12.
Piarulli F, Sartore G, Lapolla A (2013) Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol 50:101–110. https://​doi.​org/​10.​1007/​s00592-012-0412-3 CrossRefPubMed
13.
Austin MA, Breslow JL, Hennekens CH et al (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921CrossRefPubMed
14.
Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. https://​doi.​org/​10.​1093/​eurheartj/​ehx144
15.
Vakkilainen J, Steiner G, Ansquer J-C et al (2003) Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the diabetes atherosclerosis intervention study (DAIS). Circulation 107:1733–1737. https://​doi.​org/​10.​1161/​01.​CIR.​0000057982.​50167.​6E CrossRefPubMed
16.
Gardner CD, Fortmann SP, Krauss RM (1996) Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276:875–881CrossRefPubMed
17.
Trialists CT (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125. https://​doi.​org/​10.​1016/​s0140-6736(08)60104-x CrossRef
18.
Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818. https://​doi.​org/​10.​1093/​eurheartj/​ehr158 CrossRefPubMed
19.
Paoletti R, Poli A (1987) Pharmacological control of serum lipid levels: currently available drugs. Eur Heart J 8:87–91. https://​doi.​org/​10.​1093/​eurheartj/​8.​suppl_​E.​87 CrossRefPubMed
20.
Weng T-C, Yang Y-HK, Lin S-J, Tai S-H (2010) A systematic review and meta-analysis on the therapeutic equivalence of statins. J Clin Pharm Ther 35:139–151. https://​doi.​org/​10.​1111/​j.​1365-2710.​2009.​01085.​x CrossRefPubMed
21.
Collins R, Armitage J, Parish S, Sleigh P, Peto R (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016. https://​doi.​org/​10.​1016/​s0140-6736(03)13636-7 CrossRefPubMed
22.
Colhoun HM, Betteridge DJ, Durrington PN et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696. https://​doi.​org/​10.​1016/​S0140-6736(04)16895-5 CrossRefPubMed
23.
Armitage J (2007) The safety of statins in clinical practice. Lancet 370:1781–1790. https://​doi.​org/​10.​1016/​S0140-6736(07)60716-8 CrossRefPubMed
24.
Sattar N, Preiss D, Murray HM et al (2010) Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375:735–742. https://​doi.​org/​10.​1016/​s0140-6736(09)61965-6 CrossRefPubMed
25.
Preiss D (2011) Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA 305:2556. https://​doi.​org/​10.​1001/​jama.​2011.​860 CrossRefPubMed
26.
Noto D, Arca M, Tarugi P et al (2017) Association between familial hypobetalipoproteinemia and the risk of diabetes. Is this the other side of the cholesterol-diabetes connection? A systematic review of literature. Acta Diabetol 54:111–122. https://​doi.​org/​10.​1007/​s00592-016-0931-4 CrossRefPubMed
27.
Salunkhe VA, Elvstam O, Eliasson L, Wendt A (2016) Rosuvastatin treatment affects both basal and glucose-induced insulin secretion in INS-1 832/13 Cells. PLoS ONE 11:e0151592. https://​doi.​org/​10.​1371/​journal.​pone.​0151592 CrossRefPubMedPubMedCentral
28.
Urbano F, Bugliani M, Filippello A et al (2017) Atorvastatin but not pravastatin impairs mitochondrial function in human pancreatic islets and rat β-cells. Direct effect of oxidative stress. Sci Rep 7:11863. https://​doi.​org/​10.​1038/​s41598-017-11070-x CrossRefPubMedPubMedCentral
29.
Bugliani M, Syed F, Masini M et al (2013) Direct effects of rosuvastatin on pancreatic human beta cells. Acta Diabetol 50:983–985. https://​doi.​org/​10.​1007/​s00592-013-0465-y CrossRefPubMed
30.
Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058. https://​doi.​org/​10.​1093/​eurheartj/​ehw272 CrossRefPubMed
31.
Bays HE, Moore PB, Drehobl MA et al (2001) Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther 23:1209–1230. https://​doi.​org/​10.​1016/​S0149-2918(01)80102-8 CrossRefPubMed
32.
McPherson R, Hegele RA (2015) Ezetimibe: rescued by randomization (clinical and Mendelian). Arterioscler Thromb Vasc Biol 35:e13–e15. https://​doi.​org/​10.​1161/​ATVBAHA.​114.​305012 CrossRefPubMed
33.
Le N-A, Tomassini JE, Tershakovec AM et al (2015) Effect of switching from statin monotherapy to ezetimibe/simvastatin combination therapy compared with other intensified lipid-lowering strategies on lipoprotein subclasses in diabetic patients with symptomatic cardiovascular disease. J Am Heart Assoc 4:e001675. https://​doi.​org/​10.​1161/​JAHA.​114.​001675 CrossRefPubMedPubMedCentral
34.
Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397. https://​doi.​org/​10.​1056/​NEJMoa1410489 CrossRefPubMed
35.
Liu C-H, Chen T-H, Lin M-S et al (2016) Ezetimibe-simvastatin therapy reduce recurrent ischemic stroke risks in type 2 diabetic patients. J Clin Endocrinol Metab 101:2994–3001. https://​doi.​org/​10.​1210/​jc.​2016-1831 CrossRefPubMed
36.
Kashani A, Sallam T, Bheemreddy S et al (2008) Review of side-effect profile of combination ezetimibe and statin therapy in randomized clinical trials. Am J Cardiol 101:1606–1613. https://​doi.​org/​10.​1016/​j.​amjcard.​2008.​01.​041 CrossRefPubMed
37.
Gulizia MM, Colivicchi F, Ricciardi G et al (2017) ANMCO/ISS/AMD/ANCE/ARCA/FADOI/GICR-IACPR/SICI-GISE/SIBioC/SIC/SICOA/SID/SIF/SIMEU/SIMG/SIMI/SISA Joint Consensus Document on cholesterol and cardiovascular risk: diagnostic–therapeutic pathway in Italy. Eur Hear J Suppl 19:D3–D54. https://​doi.​org/​10.​1093/​eurheartj/​sux029 CrossRef
38.
Ast M, Frishman WH (1990) Bile acid sequestrants. J Clin Pharmacol 30:99–106CrossRefPubMed
39.
Davidson MH (2011) A systematic review of bile acid sequestrant therapy in children with familial hypercholesterolemia. J Clin Lipidol 5:76–81. https://​doi.​org/​10.​1016/​j.​jacl.​2011.​01.​005 CrossRefPubMed
40.
Silverman MG, Ference BA, Im K et al (2016) Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316:1289–1297. https://​doi.​org/​10.​1001/​jama.​2016.​13985 CrossRefPubMed
41.
Staels B, Dallongeville J, Auwerx J et al (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088–2093CrossRefPubMed
42.
Frick MH, Elo O, Haapa K et al (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317:1237–1245. https://​doi.​org/​10.​1056/​NEJM198711123172​001 CrossRefPubMed
43.
Rubins HB, Robins SJ, Collins D et al (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341:410–418. https://​doi.​org/​10.​1056/​NEJM199908053410​604 CrossRefPubMed
44.
Keech A, Simes RJ, Barter P et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861. https://​doi.​org/​10.​1016/​s0140-6736(05)67667-2 CrossRefPubMed
45.
ACCORD Study Group, Ginsberg HN, Elam MB et al (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574. https://​doi.​org/​10.​1056/​nejmoa1001282 CrossRef
46.
Bogdanov P, Hernández C, Corraliza L et al (2015) Effect of fenofibrate on retinal neurodegeneration in an experimental model of type 2 diabetes. Acta Diabetol 52:113–122. https://​doi.​org/​10.​1007/​s00592-014-0610-2 CrossRefPubMed
47.
Hegele RA, Ginsberg HN, Chapman MJ et al (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2:655–666. https://​doi.​org/​10.​1016/​S2213-8587(13)70191-8 CrossRefPubMed
48.
Davidson MH, Armani A, McKenney JM, Jacobson TA (2007) Safety considerations with fibrate therapy. Am J Cardiol 99:3C–18C. https://​doi.​org/​10.​1016/​j.​amjcard.​2006.​11.​016 CrossRefPubMed
49.
Davì G, Santilli F, Patrono C (2010) Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc Ther 28:216–226. https://​doi.​org/​10.​1111/​j.​1755-5922.​2010.​00179.​x CrossRefPubMed
50.
Pirro M, Vetrani C, Bianchi C et al (2017) Joint position statement on “Nutraceuticals for the treatment of hypercholesterolemia” of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr Metab Cardiovasc Dis 27:2–17. https://​doi.​org/​10.​1016/​j.​numecd.​2016.​11.​122 CrossRefPubMed
51.
Cernea S, Hâncu N, Raz I (2003) Diet and coronary heart disease in diabetes. Acta Diabetol 40(Suppl 2):S389–S400. https://​doi.​org/​10.​1007/​s00592-003-0125-8 CrossRefPubMed
52.
Pirro M, Mannarino MR, Ministrini S et al (2016) Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Sci Rep 6:23587. https://​doi.​org/​10.​1038/​srep23587 CrossRefPubMedPubMedCentral
53.
Barbosa MM, Melo AL, Damasceno NR (2017) The benefits of ω-3 supplementation depend on adiponectin basal level and adiponectin increase after the supplementation: a randomized clinical trial. Nutrition 34:7–13. https://​doi.​org/​10.​1016/​j.​nut.​2016.​08.​010 CrossRefPubMed
54.
Guardamagna O, Abello F, Baracco V et al (2011) Primary hyperlipidemias in children: effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption. Acta Diabetol 48:127–133. https://​doi.​org/​10.​1007/​s00592-010-0233-1 CrossRefPubMed
55.
Sirtori CR, Galli C, Anderson JW, Arnoldi A (2009) Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis 203:8–17. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2008.​06.​019 CrossRefPubMed
56.
Cicero AFG, Colletti A, Bajraktari G et al (2017) Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci 13:965–1005. https://​doi.​org/​10.​5114/​aoms.​2017.​69326 CrossRefPubMedPubMedCentral
57.
Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S–599S. https://​doi.​org/​10.​3945/​jn.​111.​155259 CrossRefPubMed
58.
Hartweg J, Farmer AJ, Perera R et al (2007) Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia 50:1593–1602. https://​doi.​org/​10.​1007/​s00125-007-0695-z CrossRefPubMed
59.
Fedor D, Kelley DS (2009) Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 12:138–146. https://​doi.​org/​10.​1097/​MCO.​0b013e3283218299​ CrossRefPubMed
60.
Childress L, Gay A, Zargar A, Ito MK (2013) Review of red yeast rice content and current Food and Drug Administration oversight. J Clin Lipidol 7:117–122. https://​doi.​org/​10.​1016/​j.​jacl.​2012.​09.​003 CrossRefPubMed
61.
Li Y, Jiang L, Jia Z et al (2014) A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS ONE 9:e98611. https://​doi.​org/​10.​1371/​journal.​pone.​0098611 CrossRefPubMedPubMedCentral
62.
Marazzi G, Pelliccia F, Campolongo G et al (2015) Usefulness of nutraceuticals (armolipid plus) versus ezetimibe and combination in statin-intolerant patients with dyslipidemia with coronary heart disease. Am J Cardiol 116:1798–1801. https://​doi.​org/​10.​1016/​j.​amjcard.​2015.​09.​023 CrossRefPubMed
63.
Pirro M, Mannarino MR, Bianconi V et al (2016) The effects of a nutraceutical combination on plasma lipids and glucose: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 110:76–88. https://​doi.​org/​10.​1016/​j.​phrs.​2016.​04.​021 CrossRefPubMed
64.
McCarty MF, O’Keefe JH, DiNicolantonio JJ (2015) Red yeast rice plus berberine: practical strategy for promoting vascular and metabolic health. Altern Ther Health Med 21(Suppl 2):40–45PubMed
65.
Cicero AFG, Morbini M, Bove M et al (2016) Additional therapy for cholesterol lowering in ezetimibe-treated, statin-intolerant patients in clinical practice: results from an internal audit of a university lipid clinic. Curr Med Res Opin 32:1633–1638. https://​doi.​org/​10.​1080/​03007995.​2016.​1190326 CrossRef
66.
Santos RD, Waters DD, Tarasenko L et al (2012) A comparison of non-HDL and LDL cholesterol goal attainment in a large, multinational patient population: The Lipid Treatment Assessment Project 2. Atherosclerosis 224:150–153. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2012.​06.​052 CrossRefPubMed
67.
Urbinati S, Olivari Z, Gonzini L et al (2015) Secondary prevention after acute myocardial infarction: Drug adherence, treatment goals, and predictors of health lifestyle habits. The BLITZ-4 Registry. Eur J Prev Cardiol 22:1548–1556. https://​doi.​org/​10.​1177/​2047487314561876​ CrossRefPubMed
68.
Abifadel M, Varret M, Rabès J-P et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156. https://​doi.​org/​10.​1038/​ng1161 CrossRefPubMed
69.
Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160:407–420. https://​doi.​org/​10.​1093/​aje/​kwh236 CrossRefPubMed
70.
Yue P, Averna M, Lin X, Schonfeld G (2006) The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 27:460–466. https://​doi.​org/​10.​1002/​humu.​20316 CrossRefPubMed
71.
Goldstein JL, Brown MS, Anderson RG et al (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39. https://​doi.​org/​10.​1146/​annurev.​cb.​01.​110185.​000245 CrossRefPubMed
72.
Urban D, Pöss J, Böhm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408. https://​doi.​org/​10.​1016/​j.​jacc.​2013.​07.​056 CrossRefPubMed
73.
Hovingh GK, Davidson MH, Kastelein JJP, O’Connor AM (2013) Diagnosis and treatment of familial hypercholesterolaemia. Eur Heart J 34:962–971. https://​doi.​org/​10.​1093/​eurheartj/​eht015 CrossRefPubMed
74.
Cainzos-Achirica M, Martin SS, Cornell JE et al (2015) PCSK9 inhibitors: a new era in lipid-lowering treatment? Ann Intern Med 163:64–65. https://​doi.​org/​10.​7326/​M15-0920 CrossRefPubMed
75.
Zhang X-L, Zhu Q-Q, Zhu L et al (2015) Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med 13:123. https://​doi.​org/​10.​1186/​s12916-015-0358-8 CrossRefPubMedPubMedCentral
76.
Robinson JG, Farnier M, Krempf M et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1489–1499. https://​doi.​org/​10.​1056/​NEJMoa1501031 CrossRefPubMed
77.
Cannon CP, Cariou B, Blom D et al (2015) Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J 36:1186–1194. https://​doi.​org/​10.​1093/​eurheartj/​ehv028 CrossRefPubMedPubMedCentral
78.
Moriarty PM, Thompson PD, Cannon CP et al (2015) Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 9:758–769. https://​doi.​org/​10.​1016/​j.​jacl.​2015.​08.​006 CrossRefPubMed
79.
Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509. https://​doi.​org/​10.​1056/​NEJMoa1500858 CrossRefPubMed
80.
Nissen SE, Stroes E, Dent-Acosta RE et al (2016) Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 315:1580–1590. https://​doi.​org/​10.​1001/​jama.​2016.​3608 CrossRefPubMed
81.
Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316:2373–2384. https://​doi.​org/​10.​1001/​jama.​2016.​16951 CrossRefPubMed
82.
Sattar N, Preiss D, Robinson JG et al (2016) Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol 4:403–410. https://​doi.​org/​10.​1016/​s2213-8587(16)00003-6 CrossRefPubMed
83.
Leiter LA, Cariou B, Müller-Wieland D et al (2017) Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: The ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. https://​doi.​org/​10.​1111/​dom.​13114
84.
Müller-Wieland D, Leiter LA, Cariou B et al (2017) Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidaemia at high cardiovascular risk. Cardiovasc Diabetol 16:70. https://​doi.​org/​10.​1186/​s12933-017-0552-4 CrossRefPubMedPubMedCentral
85.
Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722. https://​doi.​org/​10.​1056/​NEJMoa1615664 CrossRefPubMed
86.
Schwartz GG, Bessac L, Berdan LG et al (2014) Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J 168:682–689. https://​doi.​org/​10.​1016/​j.​ahj.​2014.​07.​028 CrossRefPubMed
87.
European Medicines Agency. Assessment report Praluent International non-proprietary name: alirocumab Procedure No. EMEA/H/C/003882/0000
88.
European Medicines Agency. Assessment report Repatha International non-proprietary name: evolocumab. Procedure No. EMEA/H/C/003766/0000
91.
Landmesser U, Chapman MJ, Farnier M et al (2017) European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur Heart J 38:2245–2255. https://​doi.​org/​10.​1093/​eurheartj/​ehw480 PubMed
92.
Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22:233–240CrossRefPubMed
93.
Crespin SR (2001) What does the future hold for diabetic dyslipidaemia? Acta Diabetol 38(Suppl 1):S21–S26CrossRefPubMed
94.
Masana L, Pedro-Botet J, Civeira F (2015) IMPROVE-IT clinical implications. Should the “high-intensity cholesterol-lowering therapy” strategy replace the “high-intensity statin therapy”? Atherosclerosis 240:161–162. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2015.​03.​002 CrossRefPubMed
95.
Santos RD (2016) PCSK9 inhibition in type 2 diabetes: so far so good, but not there yet. Lancet Diabetes Endocrinol 4:377–379. https://​doi.​org/​10.​1016/​S2213-8587(16)00014-0 CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »