Skip to main content

03-14-2017 | Bone health | Article

Imaging of diabetic bone

Journal: Endocrine

Authors: Federico Ponti, Sara Guerri, Claudia Sassi, Giuseppe Battista, Giuseppe Guglielmi, Alberto Bazzocchi

Publisher: Springer US


Diabetes is an important concern in terms of medical and socioeconomic costs; a high risk for low-trauma fractures has been reported in patients with both type 1 and type 2 diabetes. The mechanism involved in the increased fracture risk from diabetes is highly complex and still not entirely understood; obesity could play an important role: recent evidence suggests that the influence of fat on bone is mainly dependent on the pattern of regional fat deposition and that an increased amount of visceral adipose tissue negatively affects skeletal health.
Correct and timely individuation of people with high fracture risk is critical for both prevention and treatment: Dual-energy X-ray Absorptiometry (currently the “gold standard” for diagnosis of osteoporosis) underestimates fracture risk in diabetic patients and therefore is not sufficient by itself to investigate bone status. This paper is focused on imaging, covering different modalities involved in the evaluation of skeletal deterioration in diabetes, discussing the limitations of conventional methods and exploring the potential of new tools and recent high-resolution techniques, with the intent to provide interesting insight into pathophysiology and fracture risk.
A. Menke, S. Casagrande, L. Geiss, C.C. Cowie, Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314(10), 1021–1029 (2015). doi: 10.​1001/​jama.​2015.​10029 PubMedCrossRef
J.P. Boyle, T.J. Thompson, E.W. Gregg, L.E. Barker, D.F. Williamson, Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010). doi: 10.​1186/​1478-7954-8-29 PubMedPubMedCentralCrossRef
M. Janghorbani, R.M. Van Dam, W.C. Willett, F.B. Hu, Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166(5), 495–505 (2007). doi: 10.​1093/​aje/​kwm106 PubMedCrossRef
L. Oei, F. Rivadeneira, M.C. Zillikens, E.H. Oei, Diabetes, diabetic complications, and fracture risk. Curr. Osteoporos. Rep. 13(2), 106–115 (2015). doi: 10.​1007/​s11914-015-0260-5 PubMedPubMedCentralCrossRef
L.M. Giangregorio, W.D. Leslie, L.M. Lix, H. Johansson, A. Oden, E. McCloskey, J.A. Kanis, FRAX underestimates fracture risk in patients with diabetes. J. Bone Miner Res. 27(2), 301–308 (2012). doi: 10.​1002/​jbmr.​556 PubMedCrossRef
A.V. Schwartz, E. Vittinghoff, D.C. Bauer, T.A. Hillier, E.S. Strotmeyer, K.E. Ensrud, M.G. Donaldson, J.A. Cauley, T.B. Harris, A. Koster, C.R. Womack, L. Palermo, D.M. Black, Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21), 2184–2192 (2011). doi: 10.​1001/​jama.​2011.​715 PubMedPubMedCentralCrossRef
A.V. Schwartz, D.E. Sellmeyer, Diabetes, fracture, and bone fragility. Curr. Osteoporos. Rep. 5(3), 105–111 (2007) PubMedCrossRef
J.F. Griffith, H.K. Genant, New advances in imaging osteoporosis and its complications. Endocrine 42(1), 39–51 (2012). doi: 10.​1007/​s12020-012-9691-2 PubMedCrossRef
M.L. Isidro, B. Ruano, Bone disease in diabetes. Curr. Diabetes Rev. 6(3), 144–155 (2010) PubMedCrossRef
S. Yamagishi, Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr. Drug Targets 12(14), 2096–2102 (2011) PubMedCrossRef
M. Saito, K. Fujii, S. Soshi, T. Tanaka, Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos. Int. 17(7), 986–995 (2006). doi: 10.​1007/​s00198-006-0087-0 PubMedCrossRef
P.E. Witten, A. Huysseune, A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol. Rev. Camb. Philos. Soc. 84(2), 315–346 (2009). doi: 10.​1111/​j.​1469-185X.​2009.​00077.​x PubMedCrossRef
M. Carnovali, L. Luzi, G. Banfi, M. Mariotti, Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model. Endocrine 54(3), 808–817 (2016). doi: 10.​1007/​s12020-016-1106-3 PubMedCrossRef
N. Suzuki, K.I. Kitamura, A. Hattori, Fish scale is a suitable model for analyzing determinants of skeletal fragility in type 2 diabetes. Endocrine 54(3), 575–577 (2016). doi: 10.​1007/​s12020-016-1153-9 PubMedCrossRef
S. Bermeo, K. Gunaratnam, G. Duque, Fat and bone interactions. Curr. Osteoporos. Rep. 12(2), 235–242 (2014). doi: 10.​1007/​s11914-014-0199-y PubMedCrossRef
G. Guglielmi, F. Ponti, M. Agostini, M. Amadori, G. Battista, A. Bazzocchi: The role of DXA in sarcopenia. Aging. Clin. Exp. Res. (2016). doi: 10.​1007/​s40520-016-0589-3
A. Bazzocchi, F. Ponti, S. Cariani, D. Diano, L. Leuratti, U. Albisinni, G. Marchesini, G. Battista, Visceral fat and body composition changes in a female population after RYGBP: a two-year follow-up by DXA. Obes. Surg. 25(3), 443–451 (2015). doi: 10.​1007/​s11695-014-1422-8 PubMedCrossRef
C. Albala, M. Yanez, E. Devoto, C. Sostin, L. Zeballos, J.L. Santos, Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. 20(11), 1027–1032 (1996) PubMed
V. Gilsanz, J. Chalfant, A.O. Mo, D.C. Lee, F.J. Dorey, S.D. Mittelman, Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J. Clin. Endocrinol. Metab. 94(9), 3387–3393 (2009). doi: 10.​1210/​jc.​2008-2422 PubMedPubMedCentralCrossRef
A. Cohen, D.W. Dempster, R.R. Recker, J.M. Lappe, H. Zhou, A. Zwahlen, R. Muller, B. Zhao, X. Guo, T. Lang, I. Saeed, X.S. Liu, X.E. Guo, S. Cremers, C.J. Rosen, E.M. Stein, T.L. Nickolas, D.J. McMahon, P. Young, E. Shane, Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J. Clin. Endocrinol. Metab. 98(6), 2562–2572 (2013). doi: 10.​1210/​jc.​2013-1047 PubMedPubMedCentralCrossRef
E.A. Greco, A. Lenzi, S. Migliaccio, The obesity of bone. Ther. Adv. Endocrinol. Metab. 6(6), 273–286 (2015). doi: 10.​1177/​2042018815611004​ PubMedPubMedCentralCrossRef
C.J. Rosen, M.L. Bouxsein, Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2(1), 35–43 (2006). doi: 10.​1038/​ncprheum0070 PubMedCrossRef
K.O. Klein, K.A. Larmore, E. de Lancey, J.M. Brown, R.V. Considine, S.G. Hassink, Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J. Clin. Endocrinol. Metab. 83(10), 3469–3475 (1998). doi: 10.​1210/​jcem.​83.​10.​5204 PubMedCrossRef
M. Yamauchi, T. Sugimoto, T. Yamaguchi, D. Nakaoka, M. Kanzawa, S. Yano, R. Ozuru, T. Sugishita, K. Chihara, Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin. Endocrinol. (Oxf). 55(3), 341–347 (2001) PubMedCrossRef
K.M. Pou, J.M. Massaro, U. Hoffmann, R.S. Vasan, P. Maurovich-Horvat, M.G. Larson, J.F. Keaney Jr., J.B. Meigs, I. Lipinska, S. Kathiresan, J.M. Murabito, C.J. O’Donnell, E.J. Benjamin, C.S. Fox, Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham heart study. Circulation 116(11), 1234–1241 (2007). doi: 10.​1161/​circulationaha.​107.​710509 PubMedCrossRef
A. Cartier, I. Lemieux, N. Almeras, A. Tremblay, J. Bergeron, J.P. Despres, Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J. Clin. Endocrinol. Metab. 93(5), 1931–1938 (2008). doi: 10.​1210/​jc.​2007-2191 PubMedCrossRef
F.F. Horber, B. Gruber, F. Thomi, E.X. Jensen, P. Jaeger, Effect of sex and age on bone mass, body composition and fuel metabolism in humans. Nutrition. 13(6), 524–534 (1997) PubMedCrossRef
J.C. Lovejoy, C.M. Champagne, L. de Jonge, H. Xie, S.R. Smith, Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32(6), 949–958 (2008). doi: 10.​1038/​ijo.​2008.​25 CrossRef
C.J. Rosen, C. Ackert-Bicknell, J.P. Rodriguez, A.M. Pino, Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19(2), 109–124 (2009) PubMedPubMedCentralCrossRef
M.A. Bredella, Perspective: the bone-fat connection. Skeletal Radiol. 39(8), 729–731 (2010). doi: 10.​1007/​s00256-010-0936-y PubMedCrossRef
S. Adami, Bone health in diabetes: considerations for clinical management. Curr. Med. Res. Opin. 25(5), 1057–1072 (2009). doi: 10.​1185/​0300799090280114​7 PubMedCrossRef
M.N. Weitzmann, R. Pacifici, Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116(5), 1186–1194 (2006). doi: 10.​1172/​jci28550 PubMedPubMedCentralCrossRef
B. Lecka-Czernik, C. Ackert-Bicknell, M.L. Adamo, V. Marmolejos, G.A. Churchill, K.R. Shockley, I.R. Reid, A. Grey, C.J. Rosen, Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148(2), 903–911 (2007). doi: 10.​1210/​en.​2006-1121 PubMedCrossRef
Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Low, D.A. Largaespada, C.M. Verfaillie, Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893), 41–49 (2002). doi: 10.​1038/​nature00870 PubMedCrossRef
P.K. Fazeli, M.C. Horowitz, O.A. MacDougald, E.L. Scheller, M.S. Rodeheffer, C.J. Rosen, A. Klibanski, Marrow fat and bone--new perspectives. J. Clin. Endocrinol. Metab. 98(3), 935–945 (2013). doi: 10.​1210/​jc.​2012-3634 PubMedPubMedCentralCrossRef
J.J. Minguell, A. Erices, P. Conget, Mesenchymal stem cells. Exp. Biol. Med. (Maywood) 226(6), 507–520 (2001) CrossRef
S. Verma, J.H. Rajaratnam, J. Denton, J.A. Hoyland, R.J. Byers, Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J. Clin. Pathol. 55(9), 693–698 (2002) PubMedPubMedCentralCrossRef
S. Kang, C.N. Bennett, I. Gerin, L.A. Rapp, K.D. Hankenson, O.A. Macdougald, Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 282(19), 14515–14524 (2007). doi: 10.​1074/​jbc.​M700030200 PubMedCrossRef
J.M. Gimble, S. Zvonic, Z.E. Floyd, M. Kassem, M.E. Nuttall, Playing with bone and fat. J. Cell. Biochem. 98(2), 251–266 (2006). doi: 10.​1002/​jcb.​20777 PubMedCrossRef
A. Elbaz, X. Wu, D. Rivas, J.M. Gimble, G. Duque, Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J. Cell. Mol. Med. 14(4), 982–991 (2010). doi: 10.​1111/​j.​1582-4934.​2009.​00751.​x PubMedCrossRef
A.C. Maurin, P.M. Chavassieux, L. Frappart, P.D. Delmas, C.M. Serre, P.J. Meunier, Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone 26(5), 485–489 (2000). doi: 10.​1016/​s8756-3282(00)00252-0 PubMedCrossRef
K. Gunaratnam, C. Vidal, J.M. Gimble, G. Duque, Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology 155(1), 108–116 (2014). doi: 10.​1210/​en.​2013-1712 PubMedCrossRef
S. Muruganandan, C.J. Sinal: The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life (2014). doi: 10.​1002/​iub.​1254
Y. Liu, C.Y. Song, S.S. Wu, Q.H. Liang, L.Q. Yuan, E.Y. Liao, Novel adipokines and bone metabolism. Int. J. Endocrinol. 2013, 895045 (2013). doi: 10.​1155/​2013/​895045 PubMedPubMedCentral
M.E. Arlot, Y. Jiang, H.K. Genant, J. Zhao, B. Burt-Pichat, J.P. Roux, P.D. Delmas, P.J. Meunier, Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J. Bone Miner Res. 23(2), 215–222 (2008). doi: 10.​1359/​jbmr.​071012 PubMedCrossRef
F. Rauch, Watching bone cells at work: what we can see from bone biopsies. Pediatr. Nephrol. 21(4), 457–462 (2006). doi: 10.​1007/​s00467-006-0025-6 PubMedCrossRef
B. Vidal, A. Pinto, M.J. Galvao, A.R. Santos, A. Rodrigues, R. Cascao, S. Abdulghani, J. Caetano-Lopes, A. Ferreira, J.E. Fonseca, H. Canhao, Bone histomorphometry revisited. Acta Reumatol. Port. 37(4), 294–300 (2012) PubMed
A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2(6), 595–610 (1987). doi: 10.​1002/​jbmr.​5650020617 PubMedCrossRef
M.E. Leite Duarte, R.D. da Silva, [Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID)]. Rev. Hosp. Clin. Fac. Med. Sao Paulo 51(1), 7–11 (1996) PubMed
C.A. Moreira, D.W. Dempster, Bone histomorphometry in diabetes mellitus. Osteoporos. Int. 26(11), 2559–2560 (2015). doi: 10.​1007/​s00198-015-3258-z PubMedCrossRef
J.S. Manavalan, S. Cremers, D.W. Dempster, H. Zhou, E. Dworakowski, A. Kode, S. Kousteni, M.R. Rubin, Circulating osteogenic precursor cells in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab 97(9), 3240–3250 (2012). doi: 10.​1210/​jc.​2012-1546 PubMedPubMedCentralCrossRef
A. Cohen, D.W. Dempster, R. Muller, X.E. Guo, T.L. Nickolas, X.S. Liu, X.H. Zhang, A.J. Wirth, G.H. van Lenthe, T. Kohler, D.J. McMahon, H. Zhou, M.R. Rubin, J.P. Bilezikian, J.M. Lappe, R.R. Recker, E. Shane, Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos. Int. 21(2), 263–273 (2010). doi: 10.​1007/​s00198-009-0945-7 PubMedCrossRef
J.A. MacNeil, S.K. Boyd, Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 29(10), 1096–1105 (2007). doi: 10.​1016/​j.​medengphy.​2006.​11.​002 PubMedCrossRef
L.A. Armas, M.P. Akhter, A. Drincic, R.R. Recker, Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus. Bone 50(1), 91–96 (2012). doi: 10.​1016/​j.​bone.​2011.​09.​055 PubMedCrossRef
P. Vestergaard, Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos. Int. 18(4), 427–444 (2007). doi: 10.​1007/​s00198-006-0253-4 PubMedCrossRef
D.E. Bonds, J.C. Larson, A.V. Schwartz, E.S. Strotmeyer, J. Robbins, B.L. Rodriguez, K.C. Johnson, K.L. Margolis, Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J. Clin. Endocrinol. Metab. 91(9), 3404–3410 (2006). doi: 10.​1210/​jc.​2006-0614 PubMedCrossRef
P. Vestergaard, L. Rejnmark, L. Mosekilde, Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48(7), 1292–1299 (2005). doi: 10.​1007/​s00125-005-1786-3 PubMedCrossRef
K.K. Nicodemus, A.R. Folsom, Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24(7), 1192–1197 (2001) PubMedCrossRef
D.R. Weber, K. Haynes, M.B. Leonard, S.M. Willi, M.R. Denburg, Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38(10), 1913–1920 (2015). doi: 10.​2337/​dc15-0783 PubMedPubMedCentralCrossRef
A.C. Looker, M.S. Eberhardt, S.H. Saydah, Diabetes and fracture risk in older U.S. adults. Bone 82, 9–15 (2016). doi: 10.​1016/​j.​bone.​2014.​12.​008 PubMedCrossRef
V.V. Zhukouskaya, C. Eller-Vainicher, V.V. Vadzianava, A.P. Shepelkevich, I.V. Zhurava, G.G. Korolenko, O.B. Salko, E. Cairoli, P. Beck-Peccoz, I. Chiodini, Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36(6), 1635–1640 (2013). doi: 10.​2337/​dc12-1355 PubMedPubMedCentralCrossRef
J. Dytfeld, M. Michalak: Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin. Exp. Res. (2016). doi: 10.​1007/​s40520-016-0562-1
D.A. Hanley, J.P. Brown, A. Tenenhouse, W.P. Olszynski, G. Ioannidis, C. Berger, J.C. Prior, L. Pickard, T.M. Murray, T. Anastassiades, S. Kirkland, C. Joyce, L. Joseph, A. Papaioannou, S.A. Jackson, S. Poliquin, J.D. Adachi, Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J. Bone Miner. Res. 18(4), 784–790 (2003). doi: 10.​1359/​jbmr.​2003.​18.​4.​784 PubMedCrossRef
M. Yamamoto, T. Yamaguchi, M. Yamauchi, H. Kaji, T. Sugimoto, Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J. Bone Miner. Res. 24(4), 702–709 (2009). doi: 10.​1359/​jbmr.​081207 PubMedCrossRef
C. Cooper, E.J. Atkinson, W.M. O’Fallon, L.J. Melton 3rd, Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J. Bone Miner. Res. 7(2), 221–227 (1992). doi: 10.​1002/​jbmr.​5650070214 PubMedCrossRef
C.M. Klotzbuecher, P.D. Ross, P.B. Landsman, T.A. Abbott 3rd, M. Berger, Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J. Bone Miner. Res. 15(4), 721–739 (2000). doi: 10.​1359/​jbmr.​2000.​15.​4.​721 PubMedCrossRef
A. Bazzocchi, G. Guglielmi, Vertebral fracture identification. Semin. Musculoskelet. Radiol. 20(4), 317–329 (2016). doi: 10.​1055/​s-0036-1592435 PubMedCrossRef
T. Vokes, B. Lentle, The ISCD and vertebral fractures. J. Clin. Densitom. 19(1), 5–7 (2016). doi: 10.​1016/​j.​jocd.​2014.​11.​004 PubMedCrossRef
J. Hawkinson, J. Timins, D. Angelo, M. Shaw, R. Takata, F. Harshaw, Technical white paper: bone densitometry. J. Am Coll Radiol 4(5), 320–327 (2007). doi: 10.​1016/​j.​jacr.​2007.​01.​021 PubMedCrossRef
W.A. Kalender, Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos. Int. 2(2), 82–87 (1992) PubMedCrossRef
B.F. Wall, D. Hart, Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. National Radiological Protection Board. Br. J. Radiol. 70(833), 437–439 (1997). doi: 10.​1259/​bjr.​70.​833.​9227222 PubMedCrossRef
E. Barnett, B.E. Nordin, The radiological diagnosis of osteoporosis: a new approach. Clin. Radiol. 11, 166–174 (1960) PubMedCrossRef
G. Guglielmi, D. Diacinti, C. van Kuijk, F. Aparisi, C. Krestan, J.E. Adams, T.M. Link, Vertebral morphometry: current methods and recent advances. Eur. Radiol. 18(7), 1484–1496 (2008). doi: 10.​1007/​s00330-008-0899-8 PubMedCrossRef
H.K. Genant, C.Y. Wu, C. van Kuijk, M.C. Nevitt, Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993). doi: 10.​1002/​jbmr.​5650080915 PubMedCrossRef
J.A. Kanis, N. Burlet, C. Cooper, P.D. Delmas, J.Y. Reginster, F. Borgstrom, R. Rizzoli, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 19(4), 399–428 (2008). doi: 10.​1007/​s00198-008-0560-z PubMedPubMedCentralCrossRef
Development Committee of the National Osteoporosis Foundation. Osteoporos. Int. 8(4), S1–S2 (1998). doi: 10.​1007/​pl00020934 CrossRef
L. Ferrar, G. Jiang, J. Adams, R. Eastell, Identification of vertebral fractures: an update. Osteoporos. Int. 16(7), 717–728 (2005). doi: 10.​1007/​s00198-005-1880-x PubMedCrossRef
L. Oei, F. Rivadeneira, F. Ly, S.J. Breda, M.C. Zillikens, A. Hofman, A.G. Uitterlinden, G.P. Krestin, E.H. Oei, Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings. Eur. Radiol. 23(2), 476–486 (2013). doi: 10.​1007/​s00330-012-2622-z PubMedCrossRef
G.G. Crans, H.K. Genant, J.H. Krege, Prognostic utility of a semiquantitative spinal deformity index. Bone 37(2), 175–179 (2005). doi: 10.​1016/​j.​bone.​2005.​04.​003 PubMedCrossRef
C. Di Somma, M. Rubino, A. Faggiano, L. Vuolo, P. Contaldi, N. Tafuri, M. Andretti, S. Savastano, A. Colao, Spinal deformity index in patients with type 2 diabetes. Endocrine 43(3), 651–658 (2013). doi: 10.​1007/​s12020-012-9848-z PubMedCrossRef
WHO, Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 843, 1–129 (1994)
A. Bazzocchi, F. Ponti, U. Albisinni, G. Battista, G. Guglielmi, DXA: technical aspects and application. Eur. J. Radiol. 85(8), 1481–1492 (2016). doi: 10.​1016/​j.​ejrad.​2016.​04.​004 PubMedCrossRef
G. Guglielmi, J. Damilakis, G. Solomou, A. Bazzocchi, Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol. Med. 117(8), 1347–1354 (2012). doi: 10.​1007/​s11547-012-0881-z PubMedCrossRef
A. Bazzocchi, F. Ciccarese, D. Diano, P. Spinnato, U. Albisinni, C. Rossi, G. Guglielmi, Dual-energy X-ray absorptiometry in the evaluation of abdominal aortic calcifications. J. Clin. Densitom. 15(2), 198–204 (2012). doi: 10.​1016/​j.​jocd.​2011.​11.​002 PubMedCrossRef
L. Oei, M.C. Zillikens, A. Dehghan, G.H. Buitendijk, M.C. Castano-Betancourt, K. Estrada, L. Stolk, E.H. Oei, J.B. van Meurs, J.A. Janssen, A. Hofman, J.P. van Leeuwen, J.C. Witteman, H.A. Pols, A.G. Uitterlinden, C.C. Klaver, O.H. Franco, F. Rivadeneira, High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 36(6), 1619–1628 (2013). doi: 10.​2337/​dc12-1188 PubMedPubMedCentralCrossRef
A. Saller, S. Maggi, G. Romanato, P. Tonin, G. Crepaldi, Diabetes and osteoporosis. Aging Clin. Exp. Res. 20(4), 280–289 (2008) PubMedCrossRef
J.T. Tuominen, O. Impivaara, P. Puukka, T. Ronnemaa, Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22(7), 1196–1200 (1999) PubMedCrossRef
P.L. van Daele, R.P. Stolk, H. Burger, D. Algra, D.E. Grobbee, A. Hofman, J.C. Birkenhager, H.A. Pols, Bone density in non-insulin-dependent diabetes mellitus: the Rotterdam Study. Ann. Intern. Med. 122(6), 409–414 (1995) PubMedCrossRef
S. Yaturu, S. Humphrey, C. Landry, S.K. Jain, Decreased bone mineral density in men with metabolic syndrome alone and with type 2 diabetes. Med. Sci. Monit. 15(1), Cr5–Cr9 (2009) PubMed
L. Ma, L. Oei, L. Jiang, K. Estrada, H. Chen, Z. Wang, Q. Yu, M.C. Zillikens, X. Gao, F. Rivadeneira, Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur. J. Epidemiol. 27(5), 319–332 (2012). doi: 10.​1007/​s10654-012-9674-x PubMedPubMedCentralCrossRef
M.J. Ornstrup, T.N. Kjaer, T. Harslof, H. Stodkilde-Jorgensen, D.M. Hougaard, A. Cohen, S.B. Pedersen, B.L. Langdahl, Adipose tissue, estradiol levels, and bone health in obese men with metabolic syndrome. Eur. J. Endocrinol. 172(2), 205–216 (2015). doi: 10.​1530/​eje-14-0792 PubMedCrossRef
L. de II, M. van der Klift, C.E. de Laet, P.L. van Daele, A. Hofman, H.A. Pols, Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos. Int. 16(12), 1713–1720 (2005). doi: 10.​1007/​s00198-005-1909-1 CrossRef
L.D. Hordon, M. Raisi, J.E. Aaron, S.K. Paxton, M. Beneton, J.A. Kanis, : Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27(2), 271–276 (2000) PubMedCrossRef
O. Johnell, J.A. Kanis, A. Oden, H. Johansson, C. De Laet, P. Delmas, J.A. Eisman, S. Fujiwara, H. Kroger, D. Mellstrom, P.J. Meunier, L.J. Melton 3rd, T. O’Neill, H. Pols, J. Reeve, A. Silman, A. Tenenhouse, Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20(7), 1185–1194 (2005). doi: 10.​1359/​jbmr.​050304 PubMedCrossRef
A. Bazzocchi, F. Fuzzi, G. Garzillo, D. Diano, E. Rimondi, B. Merlino, A. Moio, U. Albisinni, G. Battista, G. Guglielmi, Reliability and accuracy of scout CT in the detection of vertebral fractures. Br. J. Radiol. 86(1032), 20130373 (2013). doi: 10.​1259/​bjr.​20130373 PubMedPubMedCentralCrossRef
A. Bazzocchi, P. Spinnato, F. Fuzzi, D. Diano, A.M. Morselli-Labate, C. Sassi, E. Salizzoni, G. Battista, G. Guglielmi, Vertebral fracture assessment by new dual-energy X-ray absorptiometry. Bone 50(4), 836–841 (2012). doi: 10.​1016/​j.​bone.​2012.​01.​018 PubMedCrossRef
P. Jackuliak, J. Payer, Osteoporosis, fractures, and diabetes. Int. J. Endocrinol. 2014, 820615 (2014). doi: 10.​1155/​2014/​820615 PubMedPubMedCentralCrossRef
M. Saito, K. Fujii, Y. Mori, K. Marumo, Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos. Int. 17(10), 1514–1523 (2006). doi: 10.​1007/​s00198-006-0155-5 PubMedCrossRef
S.B. Broy, J.A. Cauley, M.E. Lewiecki, J.T. Schousboe, J.A. Shepherd, W.D. Leslie, Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 1: hip geometry. J. Clin. Densitom. 18(3), 287–308 (2015). doi: 10.​1016/​j.​jocd.​2015.​06.​005 PubMedCrossRef
L. Pothuaud, P. Carceller, D. Hans, Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4), 775–787 (2008). doi: 10.​1016/​j.​bone.​2007.​11.​018 PubMedCrossRef
B.C. Silva, W.D. Leslie, H. Resch, O. Lamy, O. Lesnyak, N. Binkley, E.V. McCloskey, J.A. Kanis, J.P. Bilezikian, Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 29(3), 518–530 (2014). doi: 10.​1002/​jbmr.​2176 PubMedCrossRef
N.C. Harvey, C.C. Gluer, N. Binkley, E.V. McCloskey, M.L. Brandi, C. Cooper, D. Kendler, O. Lamy, A. Laslop, B.M. Camargos, J.Y. Reginster, R. Rizzoli, J.A. Kanis, Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015). doi: 10.​1016/​j.​bone.​2015.​05.​016 PubMedPubMedCentralCrossRef
A. Bazzocchi, F. Ponti, D. Diano, M. Amadori, U. Albisinni, G. Battista, G. Guglielmi, Trabecular bone score in healthy ageing. Br. J. Radiol. 88(1052), 20140865 (2015). doi: 10.​1259/​bjr.​20140865 PubMedPubMedCentralCrossRef
D. Hans, A.L. Goertzen, M.A. Krieg, W.D. Leslie, Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Miner. Res. 26(11), 2762–2769 (2011). doi: 10.​1002/​jbmr.​499 PubMedCrossRef
C. Cormier, O. L, S. Poriau. TBS in routine clinial practice: proposal. (Medimaps Group, Plan‐les‐Outes, 2012)
F.M. Ulivieri, B.C. Silva, F. Sardanelli, D. Hans, J.P. Bilezikian, R. Caudarella, Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47(2), 435–448 (2014). doi: 10.​1007/​s12020-014-0280-4 PubMedCrossRef
W.D. Leslie, B. Aubry-Rozier, O. Lamy, D. Hans, TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 98(2), 602–609 (2013). doi: 10.​1210/​jc.​2012-3118 PubMedCrossRef
E. Romagnoli, C. Lubrano, V. Carnevale, D. Costantini, L. Nieddu, S. Morano, S. Migliaccio, L. Gnessi, A. Lenzi, Assessment of trabecular bone score (TBS) in overweight/obese men: effect of metabolic and anthropometric factors. Endocrine 54(2), 342–347 (2016). doi: 10.​1007/​s12020-016-0857-1 PubMedCrossRef
R. Dhaliwal, D. Cibula, C. Ghosh, R.S. Weinstock, A.M. Moses, Bone quality assessment in type 2 diabetes mellitus. Osteoporos. Int. 25(7), 1969–1973 (2014). doi: 10.​1007/​s00198-014-2704-7 PubMedCrossRef
J.H. Kim, H.J. Choi, E.J. Ku, K.M. Kim, S.W. Kim, N.H. Cho, C.S. Shin, Trabecular bone score as an indicator for skeletal deterioration in diabetes. J. Clin. Endocrinol. Metab. 100(2), 475–482 (2015). doi: 10.​1210/​jc.​2014-2047 PubMedCrossRef
T. Neumann, S. Lodes, B. Kastner, T. Lehmann, D. Hans, O. Lamy, U.A. Muller, G. Wolf, A. Samann, Trabecular bone score in type 1 diabetes-a cross-sectional study. Osteoporos. Int. 27(1), 127–133 (2016). doi: 10.​1007/​s00198-015-3222-y PubMedCrossRef
T.J. Beck, Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr. Osteoporos. Rep. 5(2), 49–55 (2007) PubMedCrossRef
S.L. Bonnick, HSA: beyond BMD with DXA. Bone 41(1 Suppl 1), S9–S12 (2007). doi: 10.​1016/​j.​bone.​2007.​03.​007 PubMed
R. Garg, Z. Chen, T. Beck, J.A. Cauley, G. Wu, D. Nelson, B. Lewis, A. LaCroix, M.S. LeBoff, Hip geometry in diabetic women: implications for fracture risk. Metabolism 61(12), 1756–1762 (2012). doi: 10.​1016/​j.​metabol.​2012.​05.​010 PubMedPubMedCentralCrossRef
M. Schorr, L.E. Dichtel, A.V. Gerweck, M. Torriani, K.K. Miller, M.A. Bredella: Body composition predictors of skeletal integrity in obesity. Skeletal Radiol. (2016). doi: 10.​1007/​s00256-016-2363-1
R. Krug, A.J. Burghardt, S. Majumdar, T.M. Link, High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48(3), 601–621 (2010). doi: 10.​1016/​j.​rcl.​2010.​02.​015 PubMedPubMedCentralCrossRef
A.S. Issever, T.M. Link, M. Kentenich, P. Rogalla, A.J. Burghardt, G.J. Kazakia, S. Majumdar, G. Diederichs, Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur. Radiol. 20(2), 458–468 (2010). doi: 10.​1007/​s00330-009-1571-7 PubMedCrossRef
W. Tjong, G.J. Kazakia, A.J. Burghardt, S. Majumdar, The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med. Phys. 39(4), 1893–1903 (2012). doi: 10.​1118/​1.​3689813 PubMedPubMedCentralCrossRef
X.S. Liu, X.H. Zhang, K.K. Sekhon, M.F. Adams, D.J. McMahon, J.P. Bilezikian, E. Shane, X.E. Guo, High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25(4), 746–756 (2010). doi: 10.​1359/​jbmr.​090822 PubMed
X.S. Liu, A. Cohen, E. Shane, P.T. Yin, E.M. Stein, H. Rogers, S.L. Kokolus, D.J. McMahon, J.M. Lappe, R.R. Recker, T. Lang, X.E. Guo, Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J. Bone Miner. Res. 25(10), 2229–2238 (2010). doi: 10.​1002/​jbmr.​111 PubMedPubMedCentralCrossRef
A.J. Burghardt, A.S. Issever, A.V. Schwartz, K.A. Davis, U. Masharani, S. Majumdar, T.M. Link, : High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 95(11), 5045–5055 (2010). doi: 10.​1210/​jc.​2010-0226 PubMedPubMedCentralCrossRef
J.A. MacNeil, S.K. Boyd, Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone 41(1), 129–137 (2007). doi: 10.​1016/​j.​bone.​2007.​02.​029 PubMedCrossRef
A.J. Burghardt, G.J. Kazakia, S. Ramachandran, T.M. Link, S. Majumdar, Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25(5), 983–993 (2010). doi: 10.​1359/​jbmr.​091104 PubMed
J.M. Patsch, A.J. Burghardt, S.P. Yap, T. Baum, A.V. Schwartz, G.B. Joseph, T.M. Link, Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 28(2), 313–324 (2013). doi: 10.​1002/​jbmr.​1763 PubMedPubMedCentralCrossRef
V.V. Shanbhogue, S. Hansen, M. Frost, N.R. Jorgensen, A.P. Hermann, J.E. Henriksen, K. Brixen, Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J. Bone Miner. Res. 30(12), 2188–2199 (2015). doi: 10.​1002/​jbmr.​2573 PubMedCrossRef
M. Rix, H. Andreassen, P. Eskildsen, Impact of peripheral neuropathy on bone density in patients with type 1 diabetes. Diabetes Care 22(5), 827–831 (1999) PubMedCrossRef
R. Krug, J. Carballido-Gamio, S. Banerjee, A.J. Burghardt, T.M. Link, S. Majumdar, In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J. Magn. Reson. Imaging 27(4), 854–859 (2008). doi: 10.​1002/​jmri.​21325 PubMedCrossRef
F.W. Wehrli, P.K. Saha, B.R. Gomberg, H.K. Song, P.J. Snyder, M. Benito, A. Wright, R. Weening, Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn. Reson. Imaging 13(5), 335–355 (2002) PubMedCrossRef
F.W. Wehrli, B.R. Gomberg, P.K. Saha, H.K. Song, S.N. Hwang, P.J. Snyder, Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J. Bone Miner. Res. 16(8), 1520–1531 (2001). doi: 10.​1359/​jbmr.​2001.​16.​8.​1520 PubMedCrossRef
N. Abdalrahaman, C. McComb, J.E. Foster, J. McLean, R.S. Lindsay, J. McClure, M. McMillan, R. Drummond, D. Gordon, G.A. McKay, M.G. Shaikh, C.G. Perry, S.F. Ahmed, Deficits in trabecular bone microarchitecture in young women with type 1 diabetes mellitus. J. Bone Miner. Res. 30(8), 1386–1393 (2015). doi: 10.​1002/​jbmr.​2465 PubMedCrossRef
J.M. Pritchard, L.M. Giangregorio, S.A. Atkinson, K.A. Beattie, D. Inglis, G. Ioannidis, Z. Punthakee, J.D. Adachi, A. Papaioannou, Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res. 64(1), 83–91 (2012). doi: 10.​1002/​acr.​20602 CrossRef
D. Schellinger, C.S. Lin, J. Lim, H.G. Hatipoglu, J.C. Pezzullo, A.J. Singer, Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. Am. J. Roentgenol. 183(6), 1761–1765 (2004). doi: 10.​2214/​ajr.​183.​6.​01831761 CrossRef
D. Schellinger, C.S. Lin, H.G. Hatipoglu, D. Fertikh, Potential value of vertebral proton MR spectroscopy in determining bone weakness. Am. J. Neuroradiol. 22(8), 1620–1627 (2001) PubMed
J.B. Vogler 3rd, W.A. Murphy, Bone marrow imaging. Radiology 168(3), 679–693 (1988). doi: 10.​1148/​radiology.​168.​3.​3043546 PubMedCrossRef
D.K. Yeung, J.F. Griffith, G.E. Antonio, F.K. Lee, J. Woo, P.C. Leung, Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson. Imaging 22(2), 279–285 (2005). doi: 10.​1002/​jmri.​20367 PubMedCrossRef
T. Baum, S.P. Yap, D.C. Karampinos, L. Nardo, D. Kuo, A.J. Burghardt, U.B. Masharani, A.V. Schwartz, X. Li, T.M. Link, Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J. Magn. Reson. Imaging 35(1), 117–124 (2012). doi: 10.​1002/​jmri.​22757 PubMedCrossRef
E.W. Yu, L. Greenblatt, A. Eajazi, M. Torriani, M.A. Bredella, Marrow adipose tissue composition in adults with morbid obesity. Bone 97, 38–42 (2017). doi: 10.​1016/​j.​bone.​2016.​12.​018 PubMedCrossRef
J.M. Patsch, X. Li, T. Baum, S.P. Yap, D.C. Karampinos, A.V. Schwartz, T.M. Link, Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J. Bone Miner. Res. 28(8), 1721–1728 (2013). doi: 10.​1002/​jbmr.​1950 PubMedPubMedCentralCrossRef
J.M. Slade, L.M. Coe, R.A. Meyer, L.R. McCabe, Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J. Diabetes Complicat. 26(1), 1–9 (2012). doi: 10.​1016/​j.​jdiacomp.​2011.​11.​001 PubMedCrossRef
A.B. Longo, W.E. Ward, PUFAs, bone mineral density, and fragility fracture: findings from human studies. Adv. Nutr. 7(2), 299–312 (2016). doi: 10.​3945/​an.​115.​009472 PubMedPubMedCentralCrossRef
T.S. Orchard, J.A. Cauley, G.C. Frank, M.L. Neuhouser, J.G. Robinson, L. Snetselaar, F. Tylavsky, J. Wactawski-Wende, A.M. Young, B. Lu, R.D. Jackson, Fatty acid consumption and risk of fracture in the Women’s health initiative. Am. J. Clin. Nutr. 92(6), 1452–1460 (2010). doi: 10.​3945/​ajcn.​2010.​29955 PubMedPubMedCentralCrossRef
C.C. Gluer, Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J. Bone Miner. Res. 12(8), 1280–1288 (1997). doi: 10.​1359/​jbmr.​1997.​12.​8.​1280 PubMedCrossRef
D. Hans, C.F. Njeh, H.K. Genant, P.J. Meunier, Quantitative ultrasound in bone status assessment. Rev. Rhum. Engl. Ed. 65(7–9), 489–498 (1998) PubMed
G. Guglielmi, G. Scalzo, F. de Terlizzi, W.C. Peh, Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiol. Clin. North Am. 48(3), 577–588 (2010). doi: 10.​1016/​j.​rcl.​2010.​02.​013 PubMedCrossRef
D. Hans, P. Dargent-Molina, A.M. Schott, J.L. Sebert, C. Cormier, P.O. Kotzki, P.D. Delmas, J.M. Pouilles, G. Breart, P.J. Meunier, Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026), 511–514 (1996) PubMedCrossRef
G. Guglielmi, C.F. Njeh, F. de Terlizzi, D.A. De Serio, A. Scillitani, M. Cammisa, B. Fan, Y. Lu, H.K. Genant, Palangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif. Tissue Int. 72(4), 469–477 (2003). doi: 10.​1007/​s00223-001-1092-0 PubMedCrossRef
R. Barkmann, E. Kantorovich, C. Singal, D. Hans, H.K. Genant, M. Heller, C.C. Gluer, A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J. Clin. Densitom. 3(1), 1–7 (2000) PubMedCrossRef
K.T. Khaw, J. Reeve, R. Luben, S. Bingham, A. Welch, N. Wareham, S. Oakes, N. Day, Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363(9404), 197–202 (2004). doi: 10.​1016/​s0140-6736(03)15325-1 PubMedCrossRef
T. Yamaguchi, M. Yamamoto, I. Kanazawa, M. Yamauchi, S. Yano, N. Tanaka, E. Nitta, A. Fukuma, S. Uno, T. Sho-no, T. Sugimoto, Quantitative ultrasound and vertebral fractures in patients with type 2 diabetes. J. Bone Miner. Metab. 29(5), 626–632 (2011). doi: 10.​1007/​s00774-011-0265-9 PubMedCrossRef
S. Patel, S. Hyer, K. Tweed, S. Kerry, K. Allan, A. Rodin, J. Barron, Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcif. Tissue. Int. 82(2), 87–91 (2008). doi: 10.​1007/​s00223-007-9082-5 PubMedCrossRef
B. Tao, J.M. Liu, H.Y. Zhao, L.H. Sun, W.Q. Wang, X.Y. Li, G. Ning, Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J. Clin. Endocrinol. Metab. 93(5), 1670–1675 (2008). doi: 10.​1210/​jc.​2007-1760 PubMedCrossRef
E.S. Strotmeyer, J.A. Cauley, T.J. Orchard, A.R. Steenkiste, J.S. Dorman, Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 29(2), 306–311 (2006) PubMedCrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »