Skip to main content
Top

08-18-2018 | Bone health | Review | Article

Lifestyle Management of Diabetes: Implications for the Bone-Vascular Axis

Journal: Current Diabetes Reports

Authors: Silvia Pieralice, Francesca Vigevano, Rossella Del Toro, Nicola Napoli, Ernesto Maddaloni

Publisher: Springer US

Abstract

Purpose of Review

To describe the main pathways involved in the interplay between bone and cardiovascular disease and to highlight the possible impact of physical activity and medical nutrition therapy on the bone-vascular axis.

Recent Findings

Diabetes increases the risk of both cardiovascular disease and bone fragility fractures, sharing common pathogenic pathways, including OPG/RANK/RANKL, the FGF23/Klotho axis, calciotropic hormones, and circulating osteogenic cells. This may offer new therapeutic targets for future treatment strategies. As lifestyle intervention is the cornerstone of diabetes treatment, there is potential for an impact on the bone-vascular axis.

Summary

Evidence published suggests the bone-vascular axis encompasses key pathways for cardiovascular disease. This, along with studies showing physical activity plays a crucial role in the prevention of both bone fragility and cardiovascular disease, suggests that lifestyle intervention incorporating exercise and diet may be helpful in managing skeletal health decline in diabetes. Studies investigating the controversial role of high-fiber diet and dietary vitamin D/calcium on bone and cardiovascular health suggest an overall benefit, but further investigations are needed in this regard.
Literature
1.
International Diabetes Federation. IDF Diabete Atlas. 8th ed. Brussel, Belgium: Internatio; 2017.
2.
Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. Elsevier Inc. 2013;17:20–33.CrossRefPubMedPubMedCentral
3.
•• Lampropoulos CE, Papaioannou I, D’Cruz DP. Osteoporosis—a risk factor for cardiovascular disease? Nat Rev Rheumatol. 2012;8:587–98. This is a comprehensive review of the literature reporting the actual knowledge about the molecular pathways involved in the bone-vascular axis and summarizing the clinical evidences linking vascular calcification and osteoporosis. CrossRefPubMed
4.
Sprini D, Rini GB, Di Stefano L, Cianferotti L, Napoli N. Correlation between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab. 2014;1:117–9.
5.
Pedone C, Scarlata S, Napoli N, Lauretani F, Bandinelli S, Ferrucci L, et al. Relationship between bone cross-sectional area and indices of peripheral artery disease. Calcif Tissue Int. 2013;93(6):508–16. https://​doi.​org/​10.​1007/​s00223-013-9782-y.CrossRefPubMedPubMedCentral
6.
Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PW. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham heart study. Calcif Tissue Int. 2001;68:271–6.CrossRefPubMed
7.
Sennerby U, Farahmand B, Ahlbom A, Ljunghall S, Michaëlsson K. Cardiovascular diseases and future risk of hip fracture in women. Osteoporos Int. 2007;18:1355–62.CrossRefPubMed
8.
Bagger YZ, Tankó LB, Alexandersen P, Qin G, Christiansen C. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med. 2006;259:598–605.CrossRefPubMed
9.
Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505.CrossRefPubMed
10.
Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014;57:2057–65.CrossRefPubMedPubMedCentral
11.
• Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19. A comprehensive review of the literature about the pathophysiology of bone fragility as a complication of diabetes mellitus. Clinical data are summarized as well.CrossRefPubMed
12.
Maddaloni E, Cavallari I, Napoli N, Conte C. Vitamin D and diabetes mellitus. Front Horm Res. 2018;50:161–176
13.
Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab. 2014;99(9):3290–7. https://​doi.​org/​10.​1210/​jc.​2013-3200.CrossRefPubMedPubMedCentral
14.
Napoli N, Pedone C, Pozzilli P, Lauretani F, Bandinelli S, Ferrucci L, et al. Effect of ghrelin on bone mass density: the InChianti study. Bone. 2011;49(2):257–63.CrossRefPubMedPubMedCentral
15.
Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.CrossRefPubMedPubMedCentral
16.
Rosen CJ, Motyl KJ. No bones about it: insulin modulates skeletal remodeling. Cell. 2010;142:198–200.CrossRefPubMed
17.
Maddaloni E, D’Onofrio L, Lauria A, Maurizi AR, Strollo R, Palermo A, et al. Osteocalcin levels are inversely associated with Hba1c and BMI in adult subjects with long-standing type 1 diabetes. J Endocrinol Investig. 2014;37:661–6.CrossRef
18.
Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia. 2011;54:1291–7.CrossRefPubMed
19.
Booth SL, Centi A, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol. 2012;9:43–55.CrossRefPubMedPubMedCentral
20.
Oei L, Zillikens MC, Dehghan A, Buitendijk GHS, Castaño-Betancourt MC, Estrada K, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care. 2013;36:1619–28.CrossRefPubMedPubMedCentral
21.
Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.CrossRefPubMed
22.
McCabe LR. Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem. 2007;102:1343–57.CrossRefPubMed
23.
Maddaloni E, D’Eon S, Hastings S, Tinsley LJLJ, Napoli N, Khamaisi M, et al. Bone health in subjects with type 1 diabetes for more than 50 years. Acta Diabetol Springer Milan. 2017;54:1–10.CrossRef
24.
Keenan HA, Maddaloni E. Bone microarchitecture in type 1 diabetes: it is complicated. Curr Osteoporos Rep. 2016;14:351–8.CrossRefPubMedPubMedCentral
25.
Miao J, Brismar K, Nyrén O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care. 2005;28:2850–5.CrossRefPubMed
26.
Maddaloni E, Pozzilli P. SMART diabetes: the way to go (safe and multifactorial approach to reduce the risk for therapy in diabetes). Endocrine. 2014;46:3–5.CrossRefPubMed
27.
Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation clinical expert consensus task force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography). Circulation. 2007;115:402–26.CrossRefPubMed
28.
Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.CrossRefPubMedPubMedCentral
29.
Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S. Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation. 2012;125:2772–81.CrossRefPubMedPubMedCentral
30.
Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S. Circulating osteoblast-lineage cells in humans. N Engl J Med. 2005;352:1959–66.CrossRefPubMed
31.
Eghbali-Fatourechi GZ, Mödder UIL, Charatcharoenwitthaya N, Sanyal A, Undale AH, Clowes JA, et al. Characterization of circulating osteoblast lineage cells in humans. Bone. 2007;40:1370–7.CrossRefPubMedPubMedCentral
32.
Collin J, Gössl M, Matsuo Y, Cilluffo RR, Flammer AJ, Loeffler D, et al. Osteogenic monocytes within the coronary circulation and their association with plaque vulnerability in patients with early atherosclerosis. Int J Cardiol. 2015;181:57–64.CrossRefPubMed
33.
Fadini GP, Albiero M, Menegazzo L, Boscaro E, Vigili de Kreutzenberg S, Agostini C, et al. Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res. 2011;108:1112–21.CrossRefPubMed
34.
Maddaloni E, Xia Y, Park K, D’Eon S, Tinsley LJ, St-Louis R, et al. High density lipoprotein modulates osteocalcin expression in circulating monocytes: a potential protective mechanism for cardiovascular disease in type 1 diabetes. Cardiovasc Diabetol. 2017;16:116.CrossRefPubMedPubMedCentral
35.
Ashen MD, Blumenthal RS. Clinical practice. Low HDL cholesterol levels. N Engl J Med. 2005;353(12):1252–60.CrossRefPubMed
36.
King AC, Haskell WL, Young DR, Oka RK, Stefanick ML. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91(10):2596–604.CrossRefPubMed
37.
Ostman C, Smart NA, Morcos D, Duller A, Ridley W, Jewiss D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16(1):110.CrossRefPubMedPubMedCentral
38.
Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vasc Pharmacol. 2018;101:9–20.CrossRef
39.
Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 2006;209:836–44.CrossRefPubMed
40.
Zheng CM, Chu P, Wu CC, Ma WY, Hung KC, Hsu YH, et al. Association between increased serum osteoprotegerin levels and improvement in bone mineral density after parathyroidectomy in hemodialysis patients. Tohoku J Exp Med. 2012;226(1):19–27.CrossRefPubMed
41.
Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 2002;22:549–53.CrossRefPubMed
42.
Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.CrossRefPubMed
43.
Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.CrossRefPubMedPubMedCentral
44.
Bjerre M, Hilden J, Kastrup J, Skoog M, Hansen JF, Kolmos HJ, et al. Claricor trial group: osteoprotegerin independently predicts mortality in patients with stable coronary artery disease: the CLARICOR trial. Scand J Clin Lab Invest. 2014;74:657–64.CrossRefPubMed
45.
Nascimento MM, Hayashi SY, Riella MC, Lindholm B. Elevated levels of plasma osteoprotegerin are associated with all-cause mortality risk and atherosclerosis in patients with stages 3 to 5 chronic kidney disease. Braz J Med Biol Res. 2014;47:995–1002.CrossRefPubMedPubMedCentral
46.
Evrard S, Delanaye P, Kamel S, Cristol JP, Cavalier E. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta. 2015;438:401–14.CrossRefPubMed
47.
Razzaque MS. Fgf23-mediated regulation of systemic phosphate homeostasis: is klotho an essential player? Am J Physiol Ren Physiol. 2009;296:F470–6.CrossRef
48.
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.CrossRefPubMed
49.
Zoppellaro G, Faggin E, Puato M, Pauletto P, Rattazzi M. Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies. Am J Kidney Dis. 2012;59:135–44.CrossRefPubMed
50.
Baum M, Schiavi S, Dwarakanath V, Quigley R. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int. 2005;68:1148–53.CrossRefPubMed
51.
Tuñón J, Fernández-Fernández B, Carda R, Pello AM, Cristóbal C, Tarín N, et al. Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in patients with diabetes mellitus with coronary artery disease. Diabetes Metab Res Rev. 2016;32(7):685–93. https://​doi.​org/​10.​1002/​dmrr.​2787.CrossRefPubMed
52.
Nakahara T, Kawai-Kowase K, Matsui H, Sunaga H, Utsugi T, Iso T, et al. Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells. Atherosclerosis. 2016;253:102–10.CrossRefPubMed
53.
Holick MF. Sunlight and vitamin D: both good for cardiovascular health. J Gen Intern Med. 2002;17:733–5.CrossRefPubMedPubMedCentral
54.
Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, et al. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation. 2009;120:687–98.CrossRefPubMedPubMedCentral
55.
Neuhouser ML, Wassertheil-Smoller S, Thomson C, Aragaki A, Anderson GL, Manson JAE, et al. Multivitamin use and risk of cancer and cardiovascular disease in the Women’s health initiative cohorts. Arch Intern Med. 2009;169:294–304.CrossRefPubMed
56.
Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol. 2012;8(9):529–43.CrossRefPubMedPubMedCentral
57.
American Diabetes Association (ADA). Lifestyle management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S38–50.CrossRef
58.
Ried-Larsen M, MacDonald CS, Johansen MY, Hansen KB, Christensen R, Almdal TP, et al. Why prescribe exercise as therapy in type 2 diabetes? We have a pill for that! Diabetes Metab Res Rev. 2018;34(5):e2999. https://​doi.​org/​10.​1002/​dmrr.​2999. ReviewCrossRefPubMed
59.
Peters A. Laffel L, Colberg SR, Riddell MC. Physical activity: regulation of glucose metabolism, clinicial management strategies, and weight control. In: American Diabetes Association/JDRF Type 1 Diabetes Sourcebook. American Diabetes Association; 2013.
60.
Bouchonville M, Armamento-Villareal R, Shah K, Napoli N, Sinacore DR, Qualls C, et al. Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial. Int J Obes. 2014;38(3):423–31. https://​doi.​org/​10.​1038/​ijo.​2013.​122.CrossRef
61.
Napoli N, Shah K, Waters DL, Sinacore DR, Qualls C, Villareal DT. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr. 2014;100(1):189–98. https://​doi.​org/​10.​3945/​ajcn.​113.​082883.CrossRefPubMedPubMedCentral
62.
•• Colberg SR, Sigal RJ, Yardley JE, Riddell MC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79. In this document the American Diabetes Association declares that physical activity is recommended in diabetic population in order to prevent both bone health impairment and CV disease CrossRefPubMedPubMedCentral
63.
Armamento-Villareal R, Sadler C, Napoli N, Shah K, Chode S, Sinacore DR, et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res. 2012;27(5):1215–21. https://​doi.​org/​10.​1002/​jbmr.​1560.CrossRefPubMed
64.
Bergström I, Parini P, Gustafsson SA, Andersson G, Brinck J. Physical training increases osteoprotegerin in postmenopausal women. J Bone Miner Metab. 2012;30(2):202–7.CrossRefPubMed
65.
Wanner M, Richard A, Martin B, Linseisen J, Rohrmann S. Associations between objective and self-reported physical activity and vitamin D serum levels in the US population. Cancer Causes Control. 2015;26(6):881–91.CrossRefPubMed
66.
Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016;65(5):747–56.CrossRefPubMed
67.
Saghiv MS, Sira DB, Goldhammer E, Sagiv M. The effects of aerobic and anaerobic exercises on circulating soluble-Klotho and IGF-I in young and elderly adults and in CAD patients. J Circ Biomark. 2017;28:6.
68.
Marques EA, Mota J, Viana JL, Tuna D, Figueiredo P, Guimarães JT, et al. Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Arch Gerontol Geriatr. 2013;57(2):226–33.CrossRefPubMed
69.
•• Authors/Task Force Members, Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1–NP96. In this document the European Society of Cardiology and the European Association for Cardiovascular Prevention & Rehabilitation declare that physical activity plays a key role in the prevention of cardiovascular events and should be practice at least 4–5 days per week.CrossRef
70.
Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364(13):1218–29. https://​doi.​org/​10.​1056/​NEJMoa1008234.CrossRefPubMedPubMedCentral
71.
Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):878.CrossRefPubMedCentral
72.
Palermo A, D'Onofrio L, Buzzetti R, Manfrini S, Napoli N. Pathophysiology of bone fragility in patients with diabetes. Calcif Tissue Int. 2017;100(2):122–32.CrossRefPubMed
73.
Sanches CP, Vianna AGD, Barreto FC. The impact of type 2 diabetes on bone metabolism. Diabetol Metab Syndr. 2017;9:85.CrossRefPubMedPubMedCentral
74.
Rossini M, Adami S, Bertoldo F, Diacinti D, Gatti D, (SIOMMS). Guidelines for the diagnosis, prevention and management of osteoporosis. Reumatismo. 2016;68(1):1–39.CrossRefPubMed
75.
Zhao R, Zhang M, Zhang Q. The effectiveness of combined exercise interventions for preventing postmenopausal bone loss: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2017;47:241–51.CrossRefPubMed
76.
Hordern MD, Dunstan DW, Prins JB, Baker MK. Exercise prescription for patients with type 2 diabetes and pre-diabetes: a position statement from exercise and sport science Australia. J Sci Med Sport. 2012;15(1):25–31.CrossRefPubMed
77.
Gomez-Cabello A, Ara I, González-Agüero A, Casajus JA, Vicente-Rodriguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012;42:301–25.CrossRefPubMed
78.
Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int. 2015;26:1605–18.CrossRefPubMed
79.
Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:CD007146.
80.
De Kam D, Smulders E, Weerdesteyn V, Smits-Engelsman BCM. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos Int. 2009;20:2111–25.CrossRefPubMed
81.
Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–81.CrossRefPubMed
82.
Otten J, Stomby A, Waling M, Isaksson A, Tellström A, Lundin-Olsson L, et al. Benefits of a Paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: a randomized controlled trial in individuals with type 2 diabetes. Diabetes Metab Res Rev. 2017;33(1) https://​doi.​org/​10.​1002/​dmrr.​2828.CrossRef
83.
Church T. Exercise in obesity, metabolic syndrome, and diabetes. Prog Cardiovasc Dis. 2011;53(6):412–8.CrossRefPubMed
84.
Cesari F, Sofi F, Gori AM, Corsani CA, Caporale R, Abbate R, et al. Physical activity and circulating endothelial progenitor cells: an intervention study. Eur J Clin Investig. 2012;42(9):927–32.CrossRef
85.
Miele EM, Headley SAE. The effects of chronic aerobic exercise on cardiovascular risk factors in persons with diabetes mellitus. Curr Diab Rep. 2017;17(10):97. https://​doi.​org/​10.​1007/​s11892-017-0927-7.CrossRefPubMed
86.
Pattyn N, Cornelissen VA, Eshghi SR, Vanhees L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med. 2013;43(2):121–33.CrossRefPubMed
87.
Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489–509.CrossRefPubMed
88.
Fealy CE, Nieuwoudt S, Foucher JA, Scelsi AR, Malin SK, Pagadala M, et al. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp Physiol. 2018;103:985–94.CrossRefPubMedPubMedCentral
89.
Freese EC, Gist NH, Acitelli RM, McConnell WJ, Beck CD, et al. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome. J Appl Physiol (1985). 2015;118(7):872–9.CrossRef
90.
Lund J, Rustan AC, Løvsletten NG, Mudry JM, Langleite TM, Feng YZ, et al. Exercise in vivo marks human myotubes in vitro: training-induced increase in lipid metabolism. PLoS One. 2017;12(4):e0175441.CrossRefPubMedPubMedCentral
91.
Trumbo P, Schlicker S, Yates AA, Poos M, Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Food and Nutrition Board of the Institute of Medicine, The National Academies. J Am Diet Assoc. 2002;102(11):1621–30.CrossRefPubMed
92.
Dai Z, Zhang Y, Lu N, Felson DT, Kiel DP, Sahni S. Association between dietary Fiber intake and bone loss in the Framingham offspring study. J Bone Miner Res. 2018;33(2):241–9. https://​doi.​org/​10.​1002/​jbmr.​3308.CrossRefPubMed
93.
McCabe L, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep. 2015;13(6):363–71.CrossRefPubMedPubMedCentral
94.
Amalraj A, Pius A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India—an in vitro study. Food Chem. 2015;170:430–6. https://​doi.​org/​10.​1016/​j.​foodchem.​2014.​08.​031.CrossRefPubMed
95.
Shah M, Chandalia M, Adams-Huet B, Brinkley LJ, Sakhaee K, Grundy SM, et al. Effect of a high-fiber diet compared with a moderate-fiber diet on calcium and other mineral balances in subjects with type 2 diabetes. Diabetes Care. 2009;32(6):990–5. https://​doi.​org/​10.​2337/​dc09-0126.CrossRefPubMedPubMedCentral
96.
Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146(7):1298–306. https://​doi.​org/​10.​3945/​jn.​115.​227256.CrossRefPubMed
97.
Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, et al. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am J Clin Nutr. 2016;104(3):837–43. https://​doi.​org/​10.​3945/​ajcn.​116.​132761.CrossRefPubMed
98.
Bryk G, Coronel MZ, Pellegrini G, Mandalunis P, Rio ME, de Portela MLPM, et al. Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr. 2015;54(6):913–23. https://​doi.​org/​10.​1007/​s00394-014-0768-y.CrossRefPubMed
99.
•• Lucas S, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55. https://​doi.​org/​10.​1038/​s41467-017-02490-4. In this study, the effect of high fiber diet, SCFAs administration and bacterial transfer on bone microarchitecture in vivo. Moreover, it shows how SCFAs can interfere with osteoclast differentiation toward the suppression of bone resorption.CrossRefPubMedPubMedCentral
100.
Martin BR, Braun MM, Wigertz K, Bryant R, Zhao Y, Lee WH, et al. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J Am Coll Nutr. 2010;29(4):382–6.CrossRefPubMed
101.
Kosk D, Kramer H, Luke A, Camacho P, Bovet P, Rhule JP, et al. Dietary factors and fibroblast growth factor-23 levels in young adults with African ancestry. J Bone Miner Metab. 2017;35(6):666–74. https://​doi.​org/​10.​1007/​s00774-016-0804-5.CrossRefPubMed
102.
Grooms KN, et al. Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999–2010. Am J Med. 2013;126(12):1059–67.e1–4. https://​doi.​org/​10.​1016/​j.​amjmed.​2013.​07.​023.CrossRefPubMed
103.
Threapleton DE, Greenwood DC, Evans CEL, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fiber intake and risk of cardiovascular disease systematic review and meta-analysis. BMJ. 2013;347:f6879. https://​doi.​org/​10.​1136/​bmj.​f6879.CrossRefPubMedPubMedCentral
104.
Kim Y, Je Y. Dietary fiber intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109(1):39–54. https://​doi.​org/​10.​1016/​j.​acvd.​2015.​09.​005.CrossRefPubMed
105.
Chan CW, Lee PH. Association between dietary fiber intake with cancer and all-cause mortality among 15 740 adults: the National Health and Nutrition Examination Survey III. J Hum Nutr Diet. 2016;29(5):633–42. https://​doi.​org/​10.​1111/​jhn.​12389.CrossRefPubMed
106.
Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, et al. Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am J Clin Nutr. 2018;107(3):436–44. https://​doi.​org/​10.​1093/​ajcn/​nqx082.CrossRefPubMed
107.
Mirmiran P, Bahadoran Z, Khalili Moghadam S, Zadeh Vakili A, Azizi F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran lipid and glucose study. Nutrients. 2016;8(11):686. https://​doi.​org/​10.​3390/​nu8110686.CrossRefPubMedCentral
108.
Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69(1):30–42.CrossRefPubMed
109.
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev. 2018;34(5):e2993. https://​doi.​org/​10.​1002/​dmrr.​2993. ReviewCrossRefPubMed
110.
Vitale M, Masulli M, Cocozza S, Anichini R, Babini AC, Boemi M, et al. Sex differences in food choices, adherence to dietary recommendations and plasma lipid profile in type 2 diabetes—the TOSCA.IT study. Nutr Metab Cardiovasc Dis. 2016;26(10):879–85. https://​doi.​org/​10.​1016/​j.​numecd.​2016.​04.​006.CrossRefPubMed
111.
Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8. https://​doi.​org/​10.​1056/​NEJM200005113421​903.CrossRefPubMed
112.
Cesareo R, Iozzino M, D’onofrio L, Terrinoni I, Maddaloni E, Casini A, et al. Effectiveness and safety of calcium and vitamin D treatment for postmenopausal osteoporosis. Minerva Endocrinol. 2015;40(3):231–7
113.
The National Osteoporosis Foundation (NOF). Clinician’s guide to prevention and treatment of osteoporosis 2014. Osteoporos Int. 2014;25(10):2359–81. https://​doi.​org/​10.​1007/​s00198-014-2794-2.CrossRef
114.
Institute of Medicine (US) Committee to review dietary reference intakes for vitamin D and calcium. In: Ross AC, Taylor CL, Yaktine AL et al (eds) Dietary reference intakes for calcium and vitamin D. National Academies Press (US), Washington (DC); 2011.
115.
Xiong J, et al. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone. 2014;66:146–54. https://​doi.​org/​10.​1016/​j.​bone.​2014.​06.​006.CrossRefPubMedPubMedCentral
116.
Feng Y, Zhou M, Zhang Q, Liu H, Xu Y, Shu L, et al. Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice. Br J Nutr. 2015;113(6):909–22. https://​doi.​org/​10.​1017/​S000711451400430​9.CrossRefPubMedPubMedCentral
117.
Anderson PH, Sawyer RK, Moore AJ, May BK, O’Loughlin PD, Morris HA. Vitamin D depletion induces RANKL-mediated osteoclastogenesis and bone loss in a rodent model. J Bone Miner Res. 2008;23(11):1789–97.CrossRefPubMed
118.
Kosk D, Kramer H, Luke A, Camacho P, Bovet P, Rhule JP, et al. Dietary factors and fibroblast growth factor-23 levels in young adults with African ancestry. J Bone Miner Metab. 2017;35(6):666–74. https://​doi.​org/​10.​1007/​s00774-016-0804-5.CrossRefPubMed
119.
Di Giuseppe R, Kuhn T, Hirche F, Buijsse B, Dierkes J, Fritsche A, et al. Potential predictors of plasma fibroblast growth factor 23 concentrations: cross-sectional analysis in the EPIC-Germany study. PLoS One. 2015;10:e0133580.CrossRefPubMedPubMedCentral
120.
USDA and US Department of Health and Human Services. Dietary guidelines for Americans, 2015–2020. 8th ed. Washington (DC): US Government Printing Office; 2015.
121.
Sahni S, Mangano KM, Tucker KL, Kiel DP, Casey VA, Hannan MT. Protective association of milk intake on the risk of hip fracture: results from the Framingham original cohort. J Bone Miner Res. 2014;29(8):1756–62. https://​doi.​org/​10.​1002/​jbmr.​2219.CrossRefPubMed
122.
van Dongen LH, Kiel DP, Soedamah-Muthu SS, Bouxsein ML, Hannan MT, Sahni S. Higher dairy food intake is associated with higher spine quantitative computed tomography (QCT) bone measures in the Framingham study for men but not women. J Bone Miner Res. 2018;33:1283–90. https://​doi.​org/​10.​1002/​jbmr.​3414.CrossRefPubMed
123.
Radavelli-Bagatini S, Zhu K, Lewis JR, Prince RL. Dairy food intake, peripheral bone structure, and muscle mass in elderly ambulatory women. J Bone Miner Res. 2014;29(7):1691–700. https://​doi.​org/​10.​1002/​jbmr.​2181.CrossRefPubMed
124.
Sahni S, Mangano KM, Kiel DP, Tucker KL, Hannan MT. Dairy intake is protective against bone loss in older vitamin D supplement users: the Framingham study. J Nutr. 2017;147(4):645–52. https://​doi.​org/​10.​3945/​jn.​116.​240390.CrossRefPubMedPubMedCentral
125.
Michaëlsson K, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://​doi.​org/​10.​1136/​bmj.​g6015.CrossRefPubMedPubMedCentral
126.
Bian S, Hu J, Zhang K, Wang Y, Yu M, Ma J. Dairy product consumption and risk of hip fracture: a systematic review and meta-analysis. BMC Public Health. 2018;18(1):165. https://​doi.​org/​10.​1186/​s12889-018-5041-5.CrossRefPubMedPubMedCentral
127.
Feskanich D, Bischoff-Ferrari HA, Frazier AL, Willett WC. Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr. 2014;168(1):54–60. https://​doi.​org/​10.​1001/​jamapediatrics.​2013.​3821.CrossRefPubMedPubMedCentral
128.
Wadolowska L, Sobas K, Szczepanska J, Slowinska M, Czlapka-Matyasik M, Niedzwiedzka E. Dairy products, dietary calcium and bone health: possibility of prevention of osteoporosis in women: the Polish experience. Nutrients. 2013;5(7):2684–707. https://​doi.​org/​10.​3390/​nu5072684.CrossRefPubMedPubMedCentral
129.
• Biver, et al. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int. 2018. https://​doi.​org/​10.​1007/​s00198-018-4535-4. In this study, the evolution of bone microarchitecture, strength and structure in relation to dairies consumption are investigated in parallel with differences in biological markers such as CTX, PTH and Vitamin D.CrossRefPubMed
130.
Rizzoli R, Biver E. Effects of fermented milk products on bone. Calcif Tissue Int. 2018;102(4):489–500.CrossRefPubMed
131.
Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JPA. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:g2035. https://​doi.​org/​10.​1136/​bmj.​g2035.CrossRefPubMedPubMedCentral
132.
Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. Proc Nutr Soc. 2015;74(3):245–57. https://​doi.​org/​10.​1017/​S002966511500001​4.CrossRefPubMed
133.
Censani M, et al. Vitamin D deficiency associated with markers of cardiovascular disease in children with obesity. Glob Pediatr Health. 2018;5:2333794X17751773. https://​doi.​org/​10.​1177/​2333794X17751773​.CrossRefPubMedPubMedCentral
134.
Wang Y, Si S, Liu J, Wang Z, Jia H, Feng K, et al. The associations of serum lipids with vitamin D status. PLoS One. 2016;11(10):e0165157. https://​doi.​org/​10.​1371/​journal.​pone.​0165157.CrossRefPubMedPubMedCentral
135.
Schmidt N, Brandsch C, Kühne H, Thiele A, Hirche F, Stangl GI. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice. PLoS One. 2012;7(4):e35316. https://​doi.​org/​10.​1371/​journal.​pone.​0035316.CrossRefPubMedPubMedCentral
136.
Kubiak JM. Vitamin D supplementation does not improve CVD risk factors in vitamin D insufficient subjects. Endocr Connect. 2018. https://​doi.​org/​10.​1530/​EC-18-0144.CrossRefPubMedPubMedCentral
137.
Anderson JJB, Klemmer PJ. Risk of high dietary calcium for arterial calcification in older adults. Nutrients. 2013;5(10):3964–74. https://​doi.​org/​10.​3390/​nu5103964.CrossRefPubMedPubMedCentral
138.
Reid IR. Cardiovascular effects of calcium supplements. Nutrients. 2013;5(7):2522–9. https://​doi.​org/​10.​3390/​nu5072522.CrossRefPubMedPubMedCentral
139.
Yang B, Campbell PT, Gapstur SM, Jacobs EJ, Bostick RM, Fedirko V, et al. Calcium intake and mortality from all causes, cancer, and cardiovascular disease: the cancer prevention study II nutrition cohort. Am J Clin Nutr. 2016;103(3):886–94. https://​doi.​org/​10.​3945/​ajcn.​115.​117994.CrossRefPubMed
140.
Kong SH, Kim JH, Hong AR, Cho NH, Shin CS. Dietary calcium intake and risk of cardiovascular disease, stroke, and fracture in a population with low calcium intake. Am J Clin Nutr. 2017;106(1):27–34. https://​doi.​org/​10.​3945/​ajcn.​116.​148171.CrossRefPubMed
141.
Khan B, Nowson CA, Daly RM, English DR, Hodge AM, Giles GG, et al. Higher dietary calcium intakes are associated with reduced risks of fractures, cardiovascular events, and mortality: a prospective cohort study of older men and women. J Bone Miner Res. 2015;30(10):1758–66. https://​doi.​org/​10.​1002/​jbmr.​2515.CrossRefPubMed
142.
Anderson JJ. Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-year follow-up of the multi-ethnic study of atherosclerosis (MESA). J Am Heart Assoc. 2016;5(10):e003815.CrossRefPubMedPubMedCentral
143.
•• Kopecky SL, et al. Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med. 2016;165(12):867–8. https://​doi.​org/​10.​7326/​M16-1743. In this document the National Osteoporosis Foundation and the American Society for Preventive Cardiology declare that calcium intake from food or supplements has no relationship to the risk for cardiovascular disease, mortality, or all-cause mortality in generally healthy adults.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »